As seen on:

SMH Logo News Logo

Call 1300 303 181

Hydrogen Vehicles

Hydrogen V8 ICE

Exciting news for internal combustion engine (ICE) lovers: Toyota, Mazda, Subaru and Kawasaki are wanting to collaborate on the attempt to keep the combustion engine alive while meeting all the global clean air targets.  Not only that, but Toyota and long-time Japanese engineering partner Yamaha are at work developing a special new hydrogen-powered 5.0-litre V8 engine.  Unlike a hydrogen fuel-cell car, which combines hydrogen and oxygen atoms to create electricity to drive a motor, this new hydrogen V8 internal combustion engine is a conventional piston-driven engine that has been tuned to burn hydrogen instead of petrol.

While this newly developed V8 engine isn’t completely new, the way it’s fuelled is.  It’s a 5.0-litre naturally aspirated V8 that is based off the engine that has been used in the Lexus RC F coupe.  Yamaha says that it produces around 335 kW of power at 6800 rpm and 540 Nm of torque at 3600 rpm.  Having modified the injectors, the head, the intake manifolds and other engine components, this work has added up to make the engine environmentally friendly.  The hydrogen-fed ICE has become less powerful than the petrol-fed V8 that the hydrogen engine is based on.  In the Lexus RC F coupe, the petrol V8 puts out 472 kW and 536 Nm of torque, so while torque has increased a little, power has dropped considerably.  That said, 331 kW is still a stonking amount of power to enjoy, and more often than not it is the torque that you really want in the real world conditions.  You also still get the sound of a burbling V8, and what’s not to like about that!

Yamaha engineer, Takeshi Yamada, said that the engine has a different character to a conventional petrol motor.  He stated that hydrogen engines provide a friendlier feel, making them easier to use even without having utilize other electronic aids for the drive.

Toyota is clearly committed to the project of providing ICE powerplants that use hydrogen as the fuel.  Given that Toyota has run a hydrogen-powered Toyota Corolla in Japan’s Super Taikyu race series as well as showcasing a hydrogen-powered Toyota Yaris GR prototype with the same hydrogen engine technology, it is obvious that they want to continue with this new breed of ICE.

One of the beauties about burning hydrogen instead of petrol is that the hydrogen powerplant does not produce carbon dioxide, which is considered to be one of the primary contributors to global warming.  There would also be no significant nitrogen oxides emissions from an ICE designed to burn hydrogen, thanks to the selective catalytic reduction technology used in the aftertreatment of the combustion gases.

“Hydrogen engines house the potential to be carbon-neutral while keeping our passion for the internal combustion engine alive at the same time,” Yamaha Motor president Yoshihiro Hidaka said.  He also added that: “I started to see that engines using only hydrogen for fuel actually had very fun, easy-to-use performance characteristics”.

While hydrogen is plentiful in the universe, it must be separated from other compounds to be used as fuel.  Up to the year 2020, most hydrogen was produced from fossil fuels, resulting in CO2 emissions. Hydrogen obtained from fossil fuels is often referred to as grey hydrogen, when emissions are released into the atmosphere.  Blue hydrogen is the hydrogen produced from fossil fuels when emissions are captured through carbon capture and storage (CCS).

Hydrogen that is produced from fossil fuels using the newer non-polluting technology called methane pyrolysis is often called turquoise hydrogen.

You can also generate hydrogen from renewable energy sources, and this hydrogen is often referred to as green hydrogen.  There are two practical ways of producing green hydrogen.  One of the ways is to use electric power for producing hydrogen from the electrolysis of water.  The other way of producing green hydrogen is to use landfill gas to produce the green hydrogen in a steam reformer.  Hydrogen fuel, when it is produced by using renewable sources of energy like wind or solar power, is a renewable fuel.

Hydrogen can also be created from another renewable energy source called nuclear energy via electrolysis, and this is sometimes seen as a subset of green hydrogen, but it can also be referred to as being pink hydrogen.

Obviously, when a car can be designed to run on hydrogen that has been produced from renewable energy sources, then this is a good thing.  Toyota and Yamaha remain adamant that this is great technology which could carve out a niche for itself in the new EV automotive landscape.

Toyota has also recently revealed a fleet of 12 zero tailpipe-emission concept vehicles, many of which will reach production in the coming years.

This is all good news stuff, especially for those of us who love the sound of an ICE instead of a silent EV.  The noisy farts always get the best round of laughter!

An FCEV for Our Environment

With the rising concerns over greenhouse gas emissions, the development of ammonia fuelled vehicles as environmentally friendly cars would have to look rather promising.  A car running on NH3 – now what’s not to like about that?

Many scientists believe that it is urgent to reduce CO2 emissions because of the global warming effect that the gas has on the climate around the globe.  Despite CO2 in the atmosphere being great for plant growth (some of the edges of the earth’s deserts are greening up again with increased CO2 in the atmosphere), and the earth’s water cycle playing a pivotal role in governing the earth’s temperature, the drive to create taxing emission standards and expensive alternatives continues to drive government policy worldwide.  What if we gradually changed over to another source of energy so that everyone in the world could afford the switch, allowing people to maintain a higher standard of living?

Using CO2–free fuels to reduce the level of CO2 emissions could be a viable option in the current climate.  So, what about ammonia?

An internal combustion engine (ICE) burns a fuel.  Basically, you can convert an engine to run on any fuel such as fossil-fuels, hydrogen and ammonia, and there are many ways to do so.  ICE engines are very good in combination with battery and hybrid systems.  It would be a perfect solution to make a hydrogen-fuelled vehicle with hydrogen that has been cracked out of ammonia and stored in the vehicle.  The ammonia would then be used to drive the electric propulsion system because an electric propulsion system is highly efficient.  That would be a perfect vehicle.

The battery system in this model would not need to be anywhere near the size of a pure EV and anywhere near the weight.  For instance, in a Tesla, the whole EV platform under the car is a battery pack that is massively heavy.  A clean-burning ICE producing heat-waste from the combustion process could use this heat-waste to warm up the cabin’s interior on a cold day, cool the cabin down via a heat exchanger, and could also be used to cool and heat the battery accordingly for optimum battery operating temperatures.

You can store accessible hydrogen in the form of ammonia (NH3).  Unlike hydrogen gas, which requires very low (cryogenic) temperatures to liquefy, ammonia becomes a liquid at –34°C.  Ammonia also does so at room temperature and at 9 atmospheric pressures, making it much more convenient to use as a transportation fuel.  Ammonia is comparatively inexpensive to produce, and the hydrogen can be separated out using catalysts without undue losses.

Essentially, you have a car with a combustion engine that is burning the hydrogen that is cracked out of the stored ammonia onboard the car to produce electricity.  The engine would have an alternator as an electric motor that would power the drivetrain with electricity at close to 99% efficiency.  This set-up is known as a Fuel Cell Electric Vehicle (FCEV).

The FCEV above uses stored ammonia that’s cracked onboard the car to produce hydrogen to run the electric drive train – only emitting water vapour and warm air as exhaust, and is considered a zero-emission vehicle.  Now that sounds pretty smart, efficient and green to me!

Hyundai and Hydrogen

I’m showing my age a bit when I say that I can remember some of the earlier Hyundai cars – the Hyundai Pony and Hyundai Excel come to mind.  Back in the 80s and early 90s, Hyundai cars were light, comfortable, and not really up to the same safety standards as the cars that were produced in other parts of the world.  Nowadays, however, the story is completely different, and the South Korean automaker often tops crash safety tests with their vehicles, the vehicles are still comfortable, and the style and technology has won many awards.  Hyundai has been always improving to the point where they are now a premium brand, very desirable, and leading the world on many fronts.  Key new innovations from the Hyundai Motor Company (HMC) team are exciting and are part of Hyundai’s vision for building a cleaner, greener world that includes vehicles that no longer rely on fossil fuels.

Because of the past couple of years, where covid has taken the world’s centre stage, there has been a big shortage of semiconductors in the auto industry, to the point that some auto manufacturers have had to shut down.  Semiconductors are used in the manufacture of electronic devices, including diodes, transistors, and integrated circuits.  These devices have a wide application in anything electronic, including laptops, computers, appliances, and, of course, the modern automobile.

Like all vehicle manufacturers, HMC has been affected by the shortage and have had to temporarily suspend some of their factories.  Despite the shortage, however, along with Toyota and Tesla, Hyundai is among a handful of automakers that actually increased their global sales despite the chip shortage.

However, Hyundai now plans to develop and build its own semiconductors so that they are not so reliant on chipmakers from other corners of the globe.  Hyundai wants to make sure it has a steady supply of semiconductors for their projects on-and-into the future by making its own.  It will be the parts and service arm for Hyundai, Kia and Genesis who would play a key role in the in-house development.  Stockpiling the electronic chips would be important for Hyundai, so that when other global crisis occur, they will then be in a better position to weather the storm.  Toyota and Tesla have already had stockpile contingency plans in place for some time, which has ensured that they fared well during covid.

Hyundai and Hydrogen

Hyundai are part of the Hydrogen Heavy Duty Vehicle Industry Group – comprised of hydrogen industry leaders Air Liquide, Hyundai, Nel Hydrogen, Nikola Corporation, Shell and Toyota.  This Group has signed agreements with Tatsuno Corporation and Transfer Oil S.p.A. to industrialize globally-standard 70 MPa hydrogen heavy-duty vehicle high-flow (H70HF) fuelling hardware componentry.  But, also, in Incheon, which is just west of Seoul, and in Ulsan, production plants will begin producing the hardware in the 2nd half of 2023 with an annual capacity of 100,000 hydrogen fuel cell systems.

South Korea’s influence on core Hydrogen components will see it as the world’s largest fuel cell production capacity, which will also help the HMC to diversify their business and tap into construction machinery and logistics equipment.

EVs might be the big talking point for some, but it is hydrogen that is the dark horse in the clean-green race.  These two new fuel cell plants in Korea will accelerate the hydrogen economy and secure broader global market dominance.  I reckon that Australia could be a hub for Hydrogen in the Pacific, don’t you think?

Hyundai’s wide-ranging hydrogen revolution accelerates with the showing of their 500 kW Vision FK sports car prototype and the e-Bogie autonomous commercial transport vehicles.  HMG recently announced that it will launch next-generation hydrogen fuel-cell power units in 2023 that will double the power output, halve the cost, and reduce package size by 30%, when compared to current systems.  Hyundai has a plan to offer “hydrogen for all” by 2040.

Hyundai’s Hydrogen Timeframe

In case you were not already aware, HMG is the parent of Hyundai, Kia and Genesis.  By 2028, HMG says it will have applied fuel-cell systems to all of its heavy commercial vehicle models, including large trucks, significantly reducing transport-related CO2 emissions.

Hydrogen Fuel Cells

By 2030, Fuel-Cell Electric Vehicles (FCEV) will have achieved price parity with Battery Electric Vehicles (BEV), HMG says.  And by 2040, HMG expects hydrogen to be available for everyone, for all vehicle types, and globally, triggering a lifestyle revolution.

Models for the Future

The Vision FK sports car is a 500 kW, hydrogen-powered high-performance prototype coupe that is capable of accelerating from 0-100 km/h in less than 4 seconds, while still offering a range of 600 km between top ups.  The Vision FK’s fuel cell unit carries N Performance branding, suggesting that it would be a future Hyundai N model rather than a luxury-focused Genesis.  HMG’s head of R&D, Albert Biermann, would not be drawn on when the Vision FK would go from prototype to production, but he did confirm that the next-generation Nexo fuel-cell SUV will launch “in the second half of 2023 followed by a Staria” The Staria is a people mover recently launched in Australia.  “We are also working, of course, on fuel-cell cars for Kia and Genesis. That will take a little longer time. After 2025 you can expect further fuel cell applications.”

The e-Bogie commercial application is a fuel-cell-powered autonomous trailer that could revolutionise commercial transportation.  Biermann also stated, “We are working full throttle on commercial [first] because that is the most effective way to avoid CO2. We are putting a lot of focus on fuel cells, not only for passenger cars but also for commercial vehicles.”

HMG’s Chairman, Euisun Chung, is even more emphatic about the significance of hydrogen fuel cell applications toward a sustainable future.  “This may be the last train to a Hydrogen Society, and time is running out. Hydrogen is the most powerful and pragmatic solution to overcoming environmental challenges. Hydrogen mobility will accelerate human progress.”

He went on to say that Australia may have a role to play.  “We know Australia is a country with vast and abundant renewable energy.  We are exploring business opportunities in Australia with our partners. Our goal is to build a sustainable ecosystem for [a] global hydrogen society.”

He also said that, “We will not immediately phase out internal combustion engines (ICE) commercial vehicles, but we are not starting any new developments of ICE. No new models and no new platforms. Everything will go forward with BEVs and FCEVs.”

Interestingly, according to Hyundai’s head of fuel cell development, Mr Saehoon Kim, FCEV technology has one huge advantage over BEVs: “The main problem with [a] BEV is the scalability of batteries. For a small EV it’s okay, but for commercial large scale [operation] the question immediately is …. How are we going to stack all these batteries with the heavy weight, and who is going to be happy with the low range? So, in this case fuel cell fits perfectly.”

Hyundai’s heavy commercial fuel cell program is already well advanced. In mid-2020, 45 Hyundai Xcient fuel cell trucks began commercial operation in Switzerland. Biermann stated that the trucks covered 210,000 kilometres per month and have saved 130 tonnes of CO2 emissions every month in operation.

The key to Hyundai’s commercial strategy is its third-generation fuel-cell system, which is in the final stages of development. Hyundai expects to launch two units in 2023, one producing 100 kW for passenger vehicles and SUVs (including the next Nexo and Staria FCEVs), and a 200 kW unit for commercial applications.  It has been said that by using two fuel-cell systems for trucks Hyundai can provide around 350 kW, which is equivalent to the power of current diesel engines used in trucking logistics.

This is all very exciting news and one that I have welcomed hearing.  I’m a fan of the new hydrogen fuel-celled vehicle technology moving forward.  This is Hyundai at its best, and we can only continue to watch this space.

Current Hyundai achievements:

The current ICE Hyundai i20 N has been crowned champion of Top Gear’s Speed Week.  The 26 fastest cars in the world participated in Top Gear’s Speed Week 2021.  It was the Hyundai· i20 N’s sharp handling and everyday usability that stood out to those in the Top Gear team.

Hyundai i20N

BMW Brilliance

BMW has always been a favourite standout brand of mine, and BMW is forging new models and technology even as we speak.  It has been a bit of a gruelling year-or-two with the covid shenanigans, and car manufactures are only one small segment of the global economic pie to have taken a sizable hit.  The shortage of semiconductors has been, and still is, a problem because cars rely on these items for controlling anything from your electric windows to all the fancy driving assistance aids.  However, the winds are changing, and the rebound is occurring.  Luxury car marques like BMW seem to be doing very well, and even with the electronic chip shortages being a bit of an issue it seems that BMW will get through this period in fairly good shape.  There is always a talking point re this special car marque; sometimes the designs might look great to some and not so flash for others, but there is always a gem being turned out from this great team of motoring designers and manufacturers.  BMW cars are more often than not great to drive, good looking, practical and advanced cars.

In this covid recovery period, various chief financial officers recently mentioned that, for now, luxury marques like BMW would consciously undersupply demand levels, which seems a prudent, sensible path to take, as BMW new car prices are holding up very well – quite bullish in fact.  The increased pricing power has already trickled down to the bottom lines for BMW and Daimler.  Mercedes achieved a 12.2% return on sales in the last reported quarter, which was up from 8.4% in the same period in 2018 (2018 being of a period not affected by the pandemic or diesel emissions litigation costs).  BMW achieved a 16% return on sales, which was up from 8.6% in 2018.  BMW also reported a $5.7 billion net profit in the second quarter of this year, suggesting global auto markets are continuing to recover from the pandemic — particularly when it comes to luxury cars like BMW and Mercedes.

BMW M4 Minty Green

This is great news for BMW and car lovers in general, but what’s new in BMW’s box of tricks?  A very cool thing that BMW revealed at the recent Munich Motorshow (early September 2021) was to be found in the BMW M4 corner, where this manic machine, with its impetuous acceleration, showed a jaw-dropping minty green sheen to its beautiful, sexy exterior.  The M4 Competition wore a Mint Green paint job and sat upon gorgeous bronze 20-inch rims.  Both of these options are available as part of the brand’s expanded BMW Individual customization line, which you can find on BMW’s online configurator, where more than 130 other paint options and eight different wheel options are available.  This latest BMW M4 Competition also had a new fibre front splitter, a restyled rear bumper, a rear wing, and some unique side skirts that were all made with carbon fibre.  Carbon fibre interior seating surfaces and trim pieces are also part of the online configurator.  So, try before you buy!

The Munich motor show also allowed the public to preview a hydrogen-electric BMW X5 that is due to enter very-limited production in 2022.  This is an exciting moment because the vehicle was first previewed in 2019 as the i Hydrogen Next concept.  It’s currently in the prototype stage, and early this month it was confirmed with the go ahead, going by the name of BMW iX5 Hydrogen.

A hydrogen-electric vehicle is like a battery-electric vehicle, but instead of drawing power from electricity out of the charged battery the hydrogen-electric vehicle relies on a hydrogen fuel-cell stack to produce electricity power.  BMW’s iX5 Hydrogen has the hydrogen fuel-cell positioned up front where it draws hydrogen from 2 tanks, one in the X5’s transmission tunnel and another under the rear seats.  The tanks are made from carbon-fibre-reinforced-plastic and can hold about 5.9 kg of hydrogen at more than 10,000 psi.  Tank filling takes only a few minutes.  The hydrogen fuel-cell combines hydrogen with oxygen from the air to create electricity.  This process only has water (H2O) as a by-product – Wow!  The electricity primarily powers a single motor at the rear axle but is also used to charge a small battery that steps in from time-to-time to deliver extra grunt to the motor during high-load situations.

BMW iX5 Hydrogen Platform

The BMW iX5 Hydrogen will have a total system power output of 275 kW.  The hydrogen fuel cell, on its own, generates about 125 kW.  The vehicle’s aerodynamically shaped 22-inch wheels are wrapped in a new Pirelli tyre that is made from natural rubber and a wood-based synthetic fibre known as rayon.  These two materials replace much of the petroleum-based synthetic rubbers used in modern tyres.

The extensive field testing has already started in earnest within Europe.  Particular focus points have had the engineers examining how effectively the CO2-free drivetrain works in real-life conditions.  Also, they are measuring metrics which include reliability, safety, and efficiency during everyday conditions to ensure that the new model is perfect for mass production.  Hydrogen fuel cell technology has the potential to supplement internal combustion engines, plug-in hybrid systems, and battery-electric vehicles.  The BMW iX5 Hydrogen has hydrogen tanks that can be filled quickly in only 3–4 minutes.

BMW states that the small batch of iX5 Hydrogen models that are destined to be built in 2022 will only be used for demonstration and testing purposes.  BMW doesn’t expect to have any hydrogen-electric vehicles at dealerships until 2025 at the earliest and depending on the direction that the automotive markets take.

Newest off the showroom floor is the all-new BMW iX3 with its refreshed exterior design.  The new BMW iX3 has a sexier appearance and introduces the M Sport Package as standard.  BMW has achieved an impressive CO2 emission assessment for this next-generation iX3, and the vehicle boasts an exceptionally efficient drive system.  Extensive use of secondary raw materials in the manufacture of aluminium castings and thermoplastics combines with the new iX3 boasting an absence of rare earth materials and the use of more green electricity in its production.

BMW iX3 2022

The BMW iX3 has a kidney grille that is larger still, and it has a single-piece frame that comes in Pearl-effect Chrome with blue accents to match with the BMW i styling cues.  Its headlights have been made slimmer.  It also boasts 19-inch black aerodynamic wheels, an automatic tailgate, adaptive suspension, a heated steering wheel, a panoramic sunroof, and Smartphone integration with Apple CarPlay and Android Auto.

BMW is a bit of a landmark in the automotive world, a benchmark, the perfect blend of performance, luxury and practicality.  In the future, BMW wants to be ready to supply customers with their powertrain of choice, whether it be gasoline, diesel, battery or hydrogen.  In the case of hydrogen, BMW sees it as an opportunity for customers that favour long-distance driving or who happen to live in regions without adequate battery recharging infrastructure.

I have so many favourite BMWs and other cars, including the 4.0-litre Falcons, which have rolled our roads over the last few decades of motoring, but let’s not be nincompoops and let’s embrace new ways of automotive power; let’s embrace the new BMW i technology.

A Case for Hydrogen-Powered Cars

What’s to like about hydrogen, and hydrogen-powered cars?  We cannot see taste or even smell hydrogen, yet hydrogen makes up over 90% of matter.  The stars and the sun are made up of hydrogen gas.  Here on earth, hydrogen forms compounds; compounds are a mixture of elements that we find on the Periodic Table (That’s the big poster found in every science lab at school, which has 120 – or so – little squares with letters that make up the organised Periodic Table with all the known elements in our world.).  Hydrogen is found in almost every living thing.  Hydrogen gas is used to make chemicals such as ammonia and methane.  Hydrogen is in the water that we drink (H2O).  Some car manufacturers and scientists have been beavering away developing what is known as hydrogen-powered cars.

Before the car was even invented, hydrogen power had been around and in use in various forms since the 1800s.  It was used widely for gas streetlamps back in the day.  It was a Welshman, Sir William Robert Grove, who invented the first fuel cell back in 1839.  When you use hydrogen in a fuel cell, the only thing you produce is electricity and water!

So, hydrogen-powered cars are vehicles that contain tanks of hydrogen fuel that then combine with oxygen from the air in a process that delivers power to the car for motion.  The beauty of the hydrogen-powered vehicle is they produce only water as a waste product.

In a little bit more detail, a hydrogen fuel cell inside a hydrogen-powered car works like this…  The fuel cell has a proton exchange membrane that uses compressed hydrogen and oxygen from the air to produce electricity.  The hydrogen goes into the membrane at one end called the anode, while oxygen goes into the membrane at the other end called the cathode.  A platinum catalyst, which is positioned on the anode end of the membrane, splits the hydrogen into positive protons and negatively charged electrons.  The proton exchange membrane takes only the positive ions, while the electrons are fed into a circuit to make electricity.  It’s this electricity which is used to drive the car’s electric motor[s].  These electric motors are what provide the driving for the hydrogen-powered car to give them speed and power!

At the cathode end, the positive ions are travelling along the membrane and combining with oxygen from the air to make water (H2O).  This water drips out of the car’s exhaust/tailpipe.  If you are driving your hydrogen-powered car through a desert and need some water, then you could believably drink it.  Now, how green is that!

How can we produce hydrogen for vehicles?  Without going into too many details here (I’ll save that for another blog), hydrogen can be produced in mass from a renewable electricity system that uses generation plants like hydro dams, solar power and wind power generators.  This purpose-made hydrogen is known as green hydrogen.  Australian mining company, Fortescue, has been talking with government recently regarding the creation of a hydrogen production system for Australia as early as 2023/24.

Tiwai point, which you’ll find on the Southern-most tip of New Zealand (NZ makes up Australia’s two biggest islands!), is currently being used as an aluminium smelter.  The NZ government is in talks for designing and consenting to converting this smelter into a green hydrogen production plant even as early as 2023.

I think the hydrogen-powered vehicle makes a lot of (green) sense.  It would cut down on the need for an endless supply of new battery packs that EVs require, which are made from preciously rare earth’s resources (e.g., lithium, nickle, cobalt…), and the energy and space to dispose of the spent battery packs would be a problem.

Of course, we would need to build up a network of hydrogen refuelling stations across Australia to power this new type of vehicle.  This network-building will be easy enough and relatively cheap compared to the massive and costly EV network/upgrade.  Green hydrogen fuelling stations could simply be added onto any petrol/diesel refuelling station currently in operation across Australia.  This would also ease the changeover period for the general public.

If you are wondering what hydrogen-powered cars might look like, do take a look at the new Toyota Mirai, for an example.

Toyota Mirai

 

Carbon Dioxide Emissions and EVs

Founder of Greenpeace, Patrick Moore, has some knowledgeable things to say about carbon emissions and CO2 in the atmosphere.  Many politicians and “scientists” are stating that CO2 is the big baddie that will cause us all to burn up in smoke as the temperature of the earth will continue to heat up; and that life on earth is in terrible danger, and that the only way out of this escalating CO2 is to inflict all humans to pay higher taxes and drive EVs.  It all sounds a little fishy!

According to the Intergovernmental Panel on Climate Change (IPCC), CO2 emissions from fossil fuels, which constitute 85% of our energy use, must be reduced to zero by 2100.  It is their idea that a vast and diverse mix of policies should be employed to restrain and reduce the use of light duty vehicles (LDVs), the sort of vehicles that you and I drive.  The IPCC suggests “aggressive policy intervention to significantly reduce fuel carbon intensity and energy intensity of modes, encourage travel by the most efficient modes, and cut activity growth where possible and reasonable”.  That sounds like severe action going down like a lead balloon upon hard-working people in the world trying to pay escalating taxes to the fat cats in high places.  Maybe some of it’s true.

Apparently, those in the IPCC claim that “if we don’t save ourselves from ourselves we’re toast!”  Scientist Patrick Moore says that “Here is what is strange, though.  All life is carbon-based; and the carbon for all that life originates from CO2 in the atmosphere.  All of the carbon in the fossil fuels we are burning for energy today was once in the atmosphere as CO2 before it was consumed by plankton in the sea and plants on the land.  Coal, oil and natural gas are the remains of those plankton and plants that have been transformed by heat and pressure deep in the earth’s crust.  In other words, fossil fuels are 100% organic and were produced with solar energy.  That sounds positively green!”

Other scientists also say these coal and oil remains were laid down during the catastrophic flood that occurred over the earth’s surface as recorded in biblical events.

Patrick Moore, and other scientists, also state that if there were no CO2 in the earth’s atmosphere, the earth would be a dead planet.  The US Environmental Protection Agency (EPA) has deemed this essential ingredient for life a pollutant!  How can CO2 be bad?

Carbon Emissions is the term used by governments and policymakers as the emissions that come from burning fossil fuels for energy.  Patrick Moore continues, “…This term is entirely misleading because CO2 is not carbon.  CO2 is a colourless, odourless, tasteless gas which is an indispensable food for all living things.  Can you have too much of it?  In theory, yes.  That is what climate alarmists say is happening now!  They are stating that “CO2 levels are getting too high!”  Are they right?  The Big Picture tells us something surprising.  For most of the history of life on earth, CO2 has been present in the atmosphere at much higher levels then it is today.  During the Cambrian explosion, when multicellular life came on the scene, CO2 levels were as much as 10x higher than they are today.  From a Big Picture perspective, we are actually living in a low CO2 era…”

Patrick also suggests that science tells us that “… the optimum growth for CO2 is 4–5x what is currently found in our atmosphere.  This is why quality greenhouse growers all around the world actually inject CO2 into their greenhouses.  They want to promote plant growth, and this is the way that they do it.  Likewise, higher levels of CO2 in the global atmosphere will promote plant growth.  This is a good thing!  This will actually boost food and forest productivity, which will come in handy with the human population of earth set to continue to grow.”

Patrick Moore, co-founder of Greenpeace, for Prager University, states that “… we are seeing the positive effects of increased CO2 now.  Satellite measurements have noted the greening of the earth as crops and forests grow due to our higher levels of CO2.  It turns out that Carbon Dioxide (CO2) are not dirty words after all.  We should celebrate CO2 as the giver of life that it is.”

What are the more dangerous emissions from fossil fuels?  The majority of vehicle exhaust emissions are composed of carbon dioxide, nitrogen, water vapour, and oxygen in unconsumed air.  Carbon monoxide, unburned fuel, nitrogen oxides, nitrated hydrocarbons, and particulate matter such as mercury are also present in vehicle exhaust emissions in smaller quantities.  Catch these nastier particulates, which are hazardous to our respiratory system, via the catalytic converter or other means, and the conventional internal combustion engine is not quite such a monster.  In fact, a decent hybrid vehicle for city driving along with hydrogen fuel-based vehicles seems a much better alternative to a mass wave of EVs and taxes.  Hybrids and hygrogen-celled cars in congested areas seem a perfect fit for now.

Hybrids currently available in Australia include: many Toyota and Lexus models, Toyota Corolla SX Hybrid, Toyota RAV4 GXL Hybrid, Toyota Camry Ascent Sport Hybrid, Mitsubishi Outlander PHEV, Hyundai Ioniq, BMW X5 xDrive45e, Lexus ES300h Sports Luxury, Volvo XC90 T8 Twin Engine Hybrid, Mercedes-Benz C 300e PHEV and BMW 330e iPerformance PHEV.

If you’re interested in more from Patrick, have a look at: https://www.prageru.com/video/the-truth-about-co2/

Hydrogen Fuel Is The Nexo Step.

Hyundai Australia has unveiled their Nexo vehicle. Powered solely by hydrogen, it’s set to be a game-changer if the right infrastructure is put in place. For now, a fleet of twenty will roam the streets of Canberra during a trial phase.Nexo is powered by a hydrogen fuel cell, rated at 95kW, coupled to an electric motor. It generates 120kW and 395Nm, and has a theoretical range of over 660 kilometres. Here’s how it works, says Hyundai.

Hydrogen gas is stored in high-pressure tanks and is sent from these to the fuel cells. It mixes with oxygen taken straight from the atmosphere and reacts across a “catalyst membrane” and creates electricity for the engine and battery, and water as the sole by-product. Excess power is stored in the battery system. Fuel Cell Electric Vehicles, or FCEVs, can be refilled in virtually the same time as a petrol fuel tank.

“The arrival of NEXO on Australian roads as an ADR-approved production vehicle is a landmark in Hyundai’s ongoing commitment to green mobility and to hydrogen fuel cell electric vehicle technology.” Hyundai Motor Company CEO, Jun Heo said. The hydrogen NEXO SUV is a cornerstone in the Hyundai portfolio, complementing our hybrid, plug-in hybrid and battery electric vehicles the IONIQ and Kona Electric. NEXO is also a sign of things to come, as Hyundai continues in its long-term drive towards leadership in eco-friendly vehicles.”

It’s a one specification vehicle for the moment, and comes well equipped in that sense. A main 12.3 inch satnav equipped touchscreen is the centre of the appeal, complete with Android and Apple smartphone compatibility. The driver has a 7.0 inch info screen, and a Qi wireless smartphone charger is standard.

Seats are leather appointed, and passengers see the sky via a full length glass roof. Sounds are courtesy of Krell. Nexo rolls on 19 inch alloys, and sees its way thanks to LED headlights and daytime running lights. A Surround View Monitor, Remote Engine Start, Remote Smart parking Assist, and a powered tailgate add extra convenience. Comfort comes courtesy of a dual-zone climate control system, powered front seats, heating for the steering wheel and outboard sections of the rear seats.

SmartSense is the name Hyundai give their safety system package and the Nexo will have Forward Collision Avoidance, Driver Attention warning, and the Blind Spot Collision Avoidance is radar based. Lane Keep Assist, Rear Cross Traffic Avoidance Assist and Smart Cruise with Stop/Go functionality are also standard.

Exterior colour choices are limited. White Cream Mica, and a Dusk Blue Metallic will come with Stone Grey two-tone interior, whilst Cocoon Silver and Copper Metallic are paired with a Dark Blue interior.

The main hydrogen system is built around three storage tanks with a capacity of 156 litres. Up to 6.33 kilograms of hydrogen can be held at a pressure of 700 bar. The testing of the tanks has included structural integrity for collision impacts. The battery is a lithium-ion polymer unit, rated as 240V and 1.56kWh. It also assists in running the onboard 12V systems.

The battery itself effectively comprises most of the floor, making for better cabin packaging and a low centre of gravity. The system is also rated for cold start operation at temperatures down to -29 Celcius. It will start within 30 seconds.

In keeping with its green credentials, structural components include aluminium for the bumper beam, front knuckles, rear wheel carriers and front lower control arms. Lower kerb weight assists in the vehicle’s handling, ride, and reduces cabin noise input. The front fenders are lightweight and flexible plastic.

Hyundai Nexo refill

Bio-based materials also up the green, with up to 12.0 kilograms of CO2 being reduced as a by-product of the manufacturing process. Total weight of bio-product is 34 kilos and this is found in the carpet, headliner, trim material, door trims, and the seats and console. Bio-paints derived from corn and sugarcane waste material are also used.

Strength and safety comes from high tensile steel, making the monocoque body both rigid and torsionally strong, with over 56% of the Nexo’s bodywork made from the high strength steel/ This extends to the tank sub-frame and tested in rear collision simulations.

Hidden details such as air guides underneath and air deflectors aid aero efficiency. Hidden wipers, a Hyundai first, are fitted at front and rear, and with slimline retracting door handles the Nexo has a drag coefficient of just 0.32cD.Chassis development was carried out in Australia, Tim Rodgers, the Hyundai Motor Company Australia Product Planning and Development Specialist, said. “The platform was designed to address this challenge, with an extensive use of lightweight parts for the strut front and multi-link rear suspensions, such as aluminium knuckles and lower control arms. By reducing unsprung mass there is less energy that we have to manage through the damper and the spring, so we can use a slightly different valve characteristic and achieve the results we require.

We’ve come out of the R&D process with a refined suspension that matches quite nicely with acoustic levels in the cabin. Beyond achieving this, the tuning program targeted the normal ride and handling benchmarks, to give NEXO the same style of body control we tune into all our cars, and the same level of competency Australia’s notoriously challenging back roads.”

Not yet available for private sale, it can be leased. Hyundai have a specialist Aftersales team in place to deal with inquiries, and they can be reached through a Hyundai dealership in the first instance.

Japan’s Automotive Brilliance

Tokyo, Japan

You can’t go anywhere around Australia without noticing just how many Japanese made vehicles are motoring around our roads (and off them).  Since the 1960s, Japan has been among the top 3 automotive manufacturers in the world.  The country is home to a number of motor companies, and you’ll be familiar with them: Toyota, Honda, Nissan, Mitsubishi, Suzuki, Subaru, Isuzu.  There are, of course, more than these mainstream manufacturers.  Japan has around 78 car-manufacturing factories in 22 regions, and these employ over 5.5 million people (more than the entire population of New Zealand).

The strong competition that is happening on a global scale in the automotive industry has forced the manufacturers to come up with a new model design every four to five years.  Along with the new models, new innovative designs and new technologies are presented and used by the automakers in their new vehicles.  Automotive manufacturing is the prominent manufacturing type in Japan, which takes up 89% of the country’s manufacturing sector.  A large amount of time and money are invested into developing and improving the automotive manufacturing process, which, in turn, increases the quality and efficiency of their manufactured automotive products.

Some of the brilliant new developments from Japan automobile manufacturers have led to distinct and innovative new designs for current and future automobiles.  In order to control the market dependency on fuels, and in order to design vehicles that are more fuel-efficient, Japanese automakers have invested and built hybrid vehicles and fuel-cell vehicles.

The ideology and popularity of environmentally friendly vehicles is creating a wave of global interest and demand for these sorts of vehicles.  More and more automakers around the globe are focusing on creating the types of vehicles that are friendlier on the environment to their production line.  Japan’s automotive manufacturers are leaders in this field.  Japanese innovations in these technology sectors include autonomous taxi services and airport transportation, high-definition maps and open-source software modules for autonomous vehicles, advanced hydrogen fuel cell and alternating-current battery technology, and silicon carbide (SiC) semiconductor films for EV power electronics.  Japanese companies have been developing hydrogen fuel cell technology, which is projected to reach a market size of approximately $43 billion by 2026, growing at a CAGR of 66.9% from 2019 to 2026.  Japan’s prowess in creating autonomous vehicles and their resulting cutting edge safety features puts them well ahead of the game.

An electric vehicle is an automobile that produces power from electrical energy stored in batteries instead of from the burning of fossil fuels.  Top automakers such as Toyota, Honda, and Nissan are already class leaders.

Hybrid vehicles use two or more distinct power sources to move the car.  Typically, electric motors combine with traditional internal combustion engines to produce power. Hybrid vehicles are highly fuel efficient.  Again, Japan’s Toyota motor company is one of the automotive industry leaders in hybrid vehicle research and production – with the Toyota  Prius model leading the way.  Hybrid variants are available on many of Toyota’s collection of new vehicles.

A Fuel Cell Vehicle is equipped with a “Fuel Cell” in which electricity is generated through the chemical reaction between hydrogen and oxygen.  This chemical reaction provides the source of power to the motor.  Fuel cell systems operate by compressing hydrogen made from natural gas and gasoline, which is then converted to hydrogen by on-board systems.  Toyota’s latest fuel cell vehicle, the Mirai II, is sold in Japan.  The Mirai II uses a Hydrogen Electrochemical fuel cell that creates 130 kW.  The electric motor that is powered by the fuel cell produces 136 kW and 300 Nm.  It’s very stylish, too.

Toyota Mirai II

Raw Materials and Sustainability in an Automotive World

Car interiors are looking very stylish with many colours available, many textures and, of course, technologies.  Even the exterior and structure of new cars utilise some pretty sensational materials that are lightweight, strong and malleable.  So what are the main raw materials that make up the structure, style and flair that we love in our vehicles?

Inside each new car are different materials that require a number of raw materials for their production.  Aluminium, glass, coking coal, and iron ore are used in the process of making steel.  Kia and Mazda use very high-grade, high-strength steel in the production of their cars.  Mazda even states that they use very thin and strong steel.  There is a cost, though; the more high-grade, lightweight and high-strength the steel, the costlier it is to produce.  High-strength steel alloys cost more to manufacture.  Not only is the high-grade alloy harder to create in its raw form; it is also harder to work with.  Stamping it and forming it becomes harder, and so more energy and stronger tools are needed to press, form and cut it.

The automotive industry also relies on oil and petroleum products, not just for the gasoline and fuel to power the vehicles, but for the synthesis of plastics and in the production of other synthetic materials.  Petroleum products are needed to make huge amounts of plastics, rubber and special fibres.  After the raw materials are extracted from the earth, they are transformed into products that automakers or auto parts companies use in the car assembly process.

But wait; there is more – but only if you are into driving an electric vehicle (EV).  An EV is made up of all the raw materials described above, as the only thing that’s different about an EV from a vehicle that is powered by a combustion engine is that an EV uses a battery pack to get its power.  In every EV battery, there’s a complex chemistry of metals – cobalt, lithium, nickel and more.  These are all raw materials that need to be mined from somewhere around the globe.  Some researchers are expecting to see double-digit growth for batteries’ special raw materials over the next decade, and this sort of growth will increase the pressure on the raw material supply chain for EVs.

Hydrogen vehicles are powered by hydrogen.  The power plants of such vehicles convert the chemical energy of hydrogen into mechanical energy by either burning hydrogen in an internal combustion engine, or by reacting hydrogen with oxygen in a fuel cell to power electric motors.  The fuel cell is more common.  A hydrogen powered vehicle is made up of the same core raw materials as the contemporary combustion powered cars and the EVs; however, like the EV, the hydrogen vehicle gets it power from a different source (hydrogen).  As of 2019, 98% of the hydrogen was produced by steam methane reforming, and this emits carbon dioxide.  Hydrogen can be produced by thermochemical or pyrolytic means using renewable feedstocks, but the processes are currently expensive.  So, you can run a hydrogen vehicle with an internal combustion engine that uses hydrogen as the fuel.  However, you can also run a hydrogen vehicle that uses a hydrogen fuel cell.  The hydrogen fuel cell is more complex, relying on special raw materials (one raw material being platinum as a catalyst) to deliver the hydrogen for powering the vehicle.

Biofuel is another fuel which can be used for powering combustion engine vehicles.  Biofuel can be produced sustainably from renewable resources.  The hitch with this one is ensuring there are large enough areas and methods dedicated to growing and producing biofuel for the masses.  Biofuel is considered to be a fuel that is derived from biomass, which can be from plant or algae material or animal waste. Since such plant, algae or animal waste material can be replenished readily, biofuel is considered to be a source of renewable energy, unlike fossil fuels such as petroleum, coal, and natural gas and even EVs.

Without a doubt, the automobile industry is one of the largest consumers of the world’s raw materials, and it’s important we get informed as to just how green a heralded new technology is said to be.  Science and sustainability need to continue to power our much needed vehicles about the globe and not fossil fuel giants, electric companies or blinded government bureaucrats.

Robert Opron and the Simca Fulgur: Better Than Nostradamus?

The question as to where all the flying cars are now that we’re in 2020 has become a bit of a cliché.  It’s been a bit of a cliché ever since we hit the new millennium. This is a reference to the way that popular culture envisioned what family cars would look like in the 21st century.

However, at least one car designer had ideas that were a bit more down to earth – literally.  The year was 1958 and the designer was Robert Opron. This designer had accepted a challenge to produce a concept car for the 1959 Geneva Motor Show for his parent company Simca. Never heard of Simca? This was a French company owned by Fiat that rivalled Citroen for the title of “France’s answer to the VW Beetle”. I owned one back in my student days – possibly a Simca 1300; it had a front engine like a normal car rather than a rear engine and it’s probably worth a mint now, so I’m rather regretting selling it. Its only quirk was a flaw in the speedo: after it hit 50 mph, the needle went back down even when I accelerated.

Anyway, enough memories of student cars and back to Robert Opron.  Opron later took his genius to Citroën, then Renault, then Alfa Romeo. He has been recognised as one of the top 25 designers of the 20th century, although he wasn’t the chap responsible for the very distinctive Citroen 2CV. The Renault Alpine was his, though, as were a number of 1980s Renaults.

Opron had come across a challenge issued by the Journal de Tintin.  Yes, that’s Tintin as in the intrepid red-haired reporter who has a dog called Snowy and a best friend called Captain Haddock.  The challenge was to design a “typical” car for the 1980s or for the year 2000. The challenge included a list of specifications that had to be included in the design, including the following:

  • fuelled by a nuclear-powered battery or a hydrogen fuel cell with a range of 5000 km
  • running on two wheels, balanced gyroscopically, at speeds over 150 km/h,
  • voice controlled
  • radar guidance for navigation and for detecting hazards
  • top speed of over 300 km/h
  • automatic braking if it detected a hazard
  • headlights that adjust automatically with speed

Although Opron didn’t produce a full working prototype, he did show a shell of the concept at the 1959 motor show and the full details of the concept car, known as the Simca Fulgur, were published in the Journal de Tintin (this suggests that it would have appeared alongside The Red Sea Sharks and/or Tintin in Tibet – just in case you were curious, like I was).

The Simca Fulgur – which takes its name from the Latin word meaning “lightning” – looked like the classic Jetsons flying car, except it didn’t fly. It captured the public imagination somewhat and became the basis for what people thought futuristic cars would look like. Or what UFOs would look like – take your pick.

Anyway, from the perspective of late October in 2020, 61 years later, it’s amusing to take a look at the cars of today and see how close we’ve actually come to getting some of these features. How well did the Fulgur predict what we’d have on our roads?

  • Voice control: Yes, we’ve got this, although it’s not quite a case of telling the car your destination and letting it get there (they’re working on that). But you can use voice control on quite a few things, including the navigation system.
  • Top speed of over 300 km/h: Yes, but most cars that are capable of this have their speeds limited for safety purposes.
  • Autonomous braking and hazard detection: Yes. However, human input is still needed.
  • Automatically adjusting headlights: Yes, although they adjust for the ambient light levels rather than how fast you’re going.
  • Electric motor with hydrogen fuel cell technology: Yes, although the range isn’t anywhere near what was predicted. We’d all love a range of 5000 km in an EV (electric vehicle) or HFCV (hydrogen fuel cell vehicle).
  • Electrical motor with nuclear power: Are you kidding me? Since Chernobyl and Fukushima, nuclear power isn’t quite the sexy answer to our energy problems that it was back in the 1950s.
  • Balancing on two wheels with gyroscopic stabilisers at speeds over 150 km/h: No. Just no. If you want that sort of thing, get a motorbike, not a family saloon.

All in all, not too bad a job of predicting the future, Monsieur Opron – you did a better job than your compatriot Nostradamus.