As seen on:

SMH Logo News Logo

Call 1300 303 181

blog

The Things We Do in Our Cars

I was thinking about the different demands that we all put our vehicle through on our daily drives throughout a year.  It got me thinking about all the changes that can happen to us inside 12 months – whether the weather seasons change dramatically, families get larger or smaller, job promotions happen, we can change jobs for whatever reason, building renovations happen, moving house occurs, we make new friends, we start a fitness schedule at the gym, we try out a new sport across town, go fishing, go for that caravan trip around Australia and what not…  Our lives are fun and full of regular tasks that we both love or put up with, have jobs that we stick with or change, are full of people that come and go and people that we just love to be around and who will always be a part of our life.  The cars we drive regularly, are often a reflection of our lifestyle and can tell us a story about who we are and where we are in life.

With this ticking through my thought processing, I started to think about the changes that may or may not happen to our cars as we drive them, and how the lifestyle changes and choices that we make can affect the cars we drive.  In essence, a car is a very adaptable machine (or at least should be), and it has to be fit for purpose to cater to our own individual needs.  Often, I find myself needing to hitch up the trailer to grab some more compost for the garden, take a load to the recycling centre or help out a mate who is shifting house.  I like to make use of my drive into town to charge my mobile phone up on the way and listen to my favourite music with the volume wound right up.  Some days the temperature outside can get so cold in wintertime that I need to wind up the heater in order to thaw my fingers out and demist the rear window.  But then in summer, when the temperatures soar, I’ll have the air-conditioning wound up to maximum to keep the family inside the car nice and cool, particularly when we have the tiny grandchild travelling with us.

We have different drives that we frequently make in a month, and they all take different roads and cover varying landscapes.  Some journeys require us to drive up steep streets to get us to our friend’s house on top of the cliffs overlooking the sea, other roads have us in the middle of congested city streets and then another drive may take us for an hour or two north into the wild blue yonder through flat and undulating scenery to visit family.

We’ve learned to trust our cars to get us from A-to-B whatever the weather, whoever we have onboard, whatever we have to tow or carry.  Can a new EV manage all the lifestyle changes and demands dependably?  I’d hate to be late for my daughter’s graduation because my EV ran out of power halfway there, or that I missed the ferry because the EV had to be topped up at a charging point that had a long queue, and what about the police who aborted a chase after a dangerous criminal because he spent too long with the heater on and the siren going at the same time.

We need a car fit for purpose, a car that is cheap to run, nice to the environment and above all dependable!

Two of the Most Beautiful Cabriolet Speedsters

Aston Martin V12 Speedster

Two of the most beautiful cabriolet speedsters of recent times cost a king’s ransom and go like stink.  Because most of us will only ever get to read about them, I thought I’d give them a plug here just so we’re all aware that there are still some very extraordinary cars being made.  Arguably, and rightly so, these two cars may in your opinion not be quite as exceptional as a McLaren Elva, Chevrolet Corvette Convertible, a BMW Z4 convertible or even a Ferrari SF90 Spider, however if I had a Bentley Mulliner Bacalar or an Aston Martin V12 Speedster parked in my garage I would be especially pleased.

Bentley Mulliner Bacalar

Only 12 of the Bentley Mulliner Bacalars will ever exist, so, as you can imagine, the price tag of one of these is eyewatering (2.8 million AUD).  Eighty-eight Aston Martin V12 Speedsters aren’t that many either; they fetch close to 1.5 million dollars new.  It is almost inevitable that these two cabriolet cars will sell for more on the second-hand car market just because they are so rare and desirable.  However, if you happen to be reading this, and are a squillionaire, then here are two of the most attractive cars on the planet.

Born out of the Bentley Continental stable, under the hood of the Mulliner Bacalar lies a W12 engine that has been fettled to produce 485 kW of power.  It sits hunkered down on wider tracks and mesmerizing new wheels, and it boasts carbon-fibre front and rear wings, new light clusters (which look really cool) and a super glitzy centre console.  Inside the Bentley Bacalar is a world of luxury and fine materials, as you would expect.  Exclusive patterns on the switchgear knurling, for example, are only ever found on the Bacalar models.  Then there are the uniquely quilted seats, where each seat boasts as many as 144,199 stitches.  The veneer inserts that are used in the wrap-around cabin are from old river-wood trees from East Anglia peat bogs and are 5,500 years old (don’t tell the greenies this!).

Aston, on the other hand, has created a sweeter front end that looks sharper than the more muscular Bentley.  Seated down low in the cockpit, the Aston also has the more futuristic dash design, with the chrome-rimmed air vents on the vertical either side of the digital driver’s display.  3-D printed rubber is used throughout the cabin, and then the bar that runs between the seats is a superb feature that looks exciting as well as ensuring strength to the open-top speedster’s on-road rigidity.

Aston’s V12 Speedster uses a potent 5.2-liter twin-turbo V12 that produces 515 kW and 752 Nm of torque.  This power is sent to the rear wheels via an eight-speed automatic gearbox and a mechanical limited-slip differential.  A 0-100 km/h sprint can be completed in around 3.6 seconds and the top speed arrives at a limited 186 mph (298 km/h).  It sounds stunning when the throttle opens out.

The stats are that the Bentley Bacalar can run through the 0-100 km/h sprint in less than 4 seconds, and the 6-litre W12 twin-turbo engine packs 900 Nm of breath-taking torque, capable of hurling you to speeds well in excess of 200 mph (320 Km/h).  AWD ensures maximum grip for all occasions, of course.

Maintaining Your Car and Keeping that Classic on the Road

XB Ford Falcon GT Coupe

With some of the nicely kept Ford Falcon GTs fetching a handsome price on the second-hand car market it would be tempting to grab one, enjoy it, maintain it and know that you’ve bought an investment.  Holden’s exiting from the automotive industry also suggests that some of the awesome Commodores and HSVs would be an appreciating classic too.  But running any classic, whether from Porsche, BMW or even Toyota, can be a fun hobby and a sound investment.

The good thing about owning older Falcons and Commodores, and I’m talking about any of the models going back to the early sixties for the Falcon and late seventies for the Commodore, is that there is such a great following in Australia and New Zealand for these cars, particularly the sports models, that there always seems to be a flow of parts from somewhere out of the Southern Hemisphere.  Even aftermarket parts for a component can be easily located and sourced, and this will be true for a lot of classic cars.

There are some things that are essential to our daily lives, and currently vehicles are a huge part of anyone’s daily/weekly routines.  They drive us to our jobs, drive the kids to all of their activities; they get us to that favourite holiday or picnic spot, and are essential for running those little errands.  Without a vehicle, it would be impossible to do everything that we need to do and are used to doing.

Out of need (and for the love of it), there are many of us that have become good at keeping our vehicles in good running shape, and that doesn’t just apply to those who collect and maintain older vehicles like the cruisier Falcon and Commodore.  If you can keep your own vehicle in the best shape possible, then you can avoid the added costs of repairs or at least put repairs off for a time, and even put off the need to buy a new vehicle.  When driving, we are still seeing cars from decades ago still going strong, and you may even see some that look almost just as good as the day they were bought.  An old Ford Falcon XR8 or GT still catches attention, and Holden’s HSVs from even the early 2000s look awesome and sound amazing.

AU Ford Falcon XR8

There may be some of you who, like myself, drive a newer car (Toyota Camry for me) for getting all the weekly errands done, and then have a classic or older vehicle (Ford Fairmont for me) for enjoyment on a long cruise or holiday away.  The vehicle tucked away in the shed for the weekend can be one of those cars that you can tinker away on during your days off, while getting the pleasure of a long run out on the open road for that long weekend away.

In this day and age, there are so many resources that are on the web which can inform drivers about how to keep their vehicles in great shape so that they will run nicely for as long as possible.  The secret to being able to enjoy a car (old and new) for many, many miles is regular maintenance.  Here are just some of the basic routine maintenance tasks that you can do to keep your car on the road and running fine.

Oil Change

Change your engine oil and oil filter often.

This is the single best thing you can do to extend the life of your engine.  Keep a note of the odometer reading and date that you changed the oil and filter so that you can schedule it in for next time.

Replace your transmission fluid and differential oil.

It’s not as often as engine oil and filters need changing, but the transmission and diff oil should be done regularly (around 40-to-60,000 km) to keep these systems running sweetly.  Check your vehicle’s manual for the suggested timeframes for changing them.

Add new engine coolant.

Every once in a while, the engine coolant needs flushing out and some new coolant put back into the cooling system.  This is important because it keeps the pipes from freezing up in cold weather, it keeps the tiny coolant passages free from debri and muck that will build up overtime, and it is also very important for your heating system inside the car.  A heater core is often tricky to get to and often requires removing the whole dash just to get to the small heater core radiator.  This was the little culprit that caused my old Terrano to cook its engine!

Maintain your wheel bearings.

Wheel bearing maintenance or replacement is important because they ensure the smooth running of the tires.  When checking in for your next car check-up, make sure to ask for a wheel inspection to see if your bearings are in OK condition.  Usually, this only involves adding some grease to the bearings to get them moving smoothly again.

Change your brake fluid.

This helps fend off moisture building up in the braking system, leaving your brakes free of rust and corrosion and working at their optimum, which really comes down to staying safe out on the road.

Cleaning

Keep your exterior and interior nice and clean.  It’s recommended that you wax and wash your car four times per year at a minimum.

Keeping the interior out of heavy sunlight helps this area last longer and stay smarter.  If you have a car with leather seats, do apply leather conditioner as required to keep the leather soft, pliable and protected.

To keep your vehicle in great shape, it only takes a bit of initiative in the form of having your car taken in for maintenance every once in a while, and or doing it yourself.  If you experience any weird sounds or unusual problems with your car, then it needs to be checked out by a mechanic as soon as possible.

Now… Back out to my Falcon!

Where is Motorsport Currently Found on the EV Map?

Formula E racing car.

Traditionally, the latest cutting-edge technology finds its way into road cars via the heat of motor racing.  We are seeing EV racing going big quickly with the relatively recent Formula E championship, but how many motor racing championships are looking to EV technology for their future racing blue-print?  As yet, EV motor racing technology hasn’t made its way into the everyday life of most average Australian motorists.  Most of us still drive a motor vehicle with a healthy internal combustion engine, and most of us won’t be intending or even considering buying an expensive EV as an everyday means of transport anytime soon.

Supercars are continuing to investigate implementing hybrid technology into its racing schedule.

Formula One has had its engine regulations tweaked further with the aim of promoting closer racing and more balanced competition, as well as bringing economic and sporting sustainability to Formula 1.  So, the cars are now flashier and more visually alluring, with the reshaping of the front and rear wings looking good.  Formula One has a target to be net zero by 2030, and the way this is to be achieved is by removing single use plastics from its events, in collaboration with its circuits.  Formula One won’t be going electric but will stay hybrid, and this has been a definite decision that the ‘powers that be’ have taken for the good of the automotive industry as they keep their racing car platforms relevant for future road cars.  Formula One does not see electrification as the new world-religion, and it has stated that EVs are definitely not the only way to move forward with cars.  Hybrid technology is Formula One’s current future objective, where the 2025 engine-unit will be hybrid and using 100 % sustainable fuels.  Formula One sees a need to reduce the costs of this new engine-unit and platform so that it is affordable and less complex, which will open up huge potential for original equipment manufacturers (OEMs) to use in other applications for road cars.

In the World Rally Championship, current hybrid engine regulations from 2022 through to 2025 is all go, which introduces hybrid technology to the fastest cars on gravel.  The hybrid technical regulations are a long way from being finalised, but initial talks have mooted a ‘supplementary hybrid system’ which controls components and software.  The proposed hybrid units would allow WRC cars, which will retain the 2017 aero and engine package, to run as full EVs on transit stages, while providing a power boost on competitive special stages.  Following 2025, the plan is to open up the rules to allow manufacturers to use their own electric systems for racing.

Formula E

Formula E is going from strength to strength, with Mercedes-Benz and Porsche recently joining the grid.  Formula E, officially the ABB FIA Formula E World Championship, is a single-seater motorsport championship for electric cars (EVs).  The series was conceived in 2011 in Paris.  Formula E is the biggest motor racing event solely focussed on EV racing alone, where it is the proving ground and platform to test new ev technologies, drive development to the production line, and put more EVs on the road.

Using the sport as its showcase, the ABB FIA Formula E World Championship is sending the biggest message out to the world that may help alter perceptions and speed-up the switch to electric, in a bid to counteract the so-called “climate crisis” as well as addressing the effects of air pollution – particularly in cities.  Sure, Formula E is the fastest-growing series in motorsport because its also the newest; however, it is certainly going to help put EV technology out there on the roads, even if most current EV buyers are either famous and or high-end earners.

Some electrification in motor racing is happening, where we’re seeing classes like the British Touring Car Championship, IndyCar, IMSA, NASCAR and World Rallycross Championship having some sort of hybrid or fully electric rules etched into the near-future pipeline.  This is all good, but the reality is that most motorists in the general public will still be driving a car with a combustion engine, or combustion engine with hybrid technology, or a car with a combustion engine running on bio fuels in a decade because of the price of a new EV being way too steep, the lack of an EV infrastructure another, the cost of developing a country’s power grid worthy of supporting the power drain of a big EV fleet, EV battery life span, and the list goes on…

All of the many negative attributes that can be accredited to EVs aside, there are some fascinating new technological developments in hybrid and ev technology unfolding within motorsport itself.

Carbon Dioxide Emissions and EVs

Founder of Greenpeace, Patrick Moore, has some knowledgeable things to say about carbon emissions and CO2 in the atmosphere.  Many politicians and “scientists” are stating that CO2 is the big baddie that will cause us all to burn up in smoke as the temperature of the earth will continue to heat up; and that life on earth is in terrible danger, and that the only way out of this escalating CO2 is to inflict all humans to pay higher taxes and drive EVs.  It all sounds a little fishy!

According to the Intergovernmental Panel on Climate Change (IPCC), CO2 emissions from fossil fuels, which constitute 85% of our energy use, must be reduced to zero by 2100.  It is their idea that a vast and diverse mix of policies should be employed to restrain and reduce the use of light duty vehicles (LDVs), the sort of vehicles that you and I drive.  The IPCC suggests “aggressive policy intervention to significantly reduce fuel carbon intensity and energy intensity of modes, encourage travel by the most efficient modes, and cut activity growth where possible and reasonable”.  That sounds like severe action going down like a lead balloon upon hard-working people in the world trying to pay escalating taxes to the fat cats in high places.  Maybe some of it’s true.

Apparently, those in the IPCC claim that “if we don’t save ourselves from ourselves we’re toast!”  Scientist Patrick Moore says that “Here is what is strange, though.  All life is carbon-based; and the carbon for all that life originates from CO2 in the atmosphere.  All of the carbon in the fossil fuels we are burning for energy today was once in the atmosphere as CO2 before it was consumed by plankton in the sea and plants on the land.  Coal, oil and natural gas are the remains of those plankton and plants that have been transformed by heat and pressure deep in the earth’s crust.  In other words, fossil fuels are 100% organic and were produced with solar energy.  That sounds positively green!”

Other scientists also say these coal and oil remains were laid down during the catastrophic flood that occurred over the earth’s surface as recorded in biblical events.

Patrick Moore, and other scientists, also state that if there were no CO2 in the earth’s atmosphere, the earth would be a dead planet.  The US Environmental Protection Agency (EPA) has deemed this essential ingredient for life a pollutant!  How can CO2 be bad?

Carbon Emissions is the term used by governments and policymakers as the emissions that come from burning fossil fuels for energy.  Patrick Moore continues, “…This term is entirely misleading because CO2 is not carbon.  CO2 is a colourless, odourless, tasteless gas which is an indispensable food for all living things.  Can you have too much of it?  In theory, yes.  That is what climate alarmists say is happening now!  They are stating that “CO2 levels are getting too high!”  Are they right?  The Big Picture tells us something surprising.  For most of the history of life on earth, CO2 has been present in the atmosphere at much higher levels then it is today.  During the Cambrian explosion, when multicellular life came on the scene, CO2 levels were as much as 10x higher than they are today.  From a Big Picture perspective, we are actually living in a low CO2 era…”

Patrick also suggests that science tells us that “… the optimum growth for CO2 is 4–5x what is currently found in our atmosphere.  This is why quality greenhouse growers all around the world actually inject CO2 into their greenhouses.  They want to promote plant growth, and this is the way that they do it.  Likewise, higher levels of CO2 in the global atmosphere will promote plant growth.  This is a good thing!  This will actually boost food and forest productivity, which will come in handy with the human population of earth set to continue to grow.”

Patrick Moore, co-founder of Greenpeace, for Prager University, states that “… we are seeing the positive effects of increased CO2 now.  Satellite measurements have noted the greening of the earth as crops and forests grow due to our higher levels of CO2.  It turns out that Carbon Dioxide (CO2) are not dirty words after all.  We should celebrate CO2 as the giver of life that it is.”

What are the more dangerous emissions from fossil fuels?  The majority of vehicle exhaust emissions are composed of carbon dioxide, nitrogen, water vapour, and oxygen in unconsumed air.  Carbon monoxide, unburned fuel, nitrogen oxides, nitrated hydrocarbons, and particulate matter such as mercury are also present in vehicle exhaust emissions in smaller quantities.  Catch these nastier particulates, which are hazardous to our respiratory system, via the catalytic converter or other means, and the conventional internal combustion engine is not quite such a monster.  In fact, a decent hybrid vehicle for city driving along with hydrogen fuel-based vehicles seems a much better alternative to a mass wave of EVs and taxes.  Hybrids and hygrogen-celled cars in congested areas seem a perfect fit for now.

Hybrids currently available in Australia include: many Toyota and Lexus models, Toyota Corolla SX Hybrid, Toyota RAV4 GXL Hybrid, Toyota Camry Ascent Sport Hybrid, Mitsubishi Outlander PHEV, Hyundai Ioniq, BMW X5 xDrive45e, Lexus ES300h Sports Luxury, Volvo XC90 T8 Twin Engine Hybrid, Mercedes-Benz C 300e PHEV and BMW 330e iPerformance PHEV.

If you’re interested in more from Patrick, have a look at: https://www.prageru.com/video/the-truth-about-co2/

EVs and the Japanese Manufacturers

I like to get a feel for what is truly happening in the EV world by heading over to the Japanese to see what they are up to.  The Japanese make the best cars in the world, at least from a reliability and practical point of view, so it makes sense to me to have a look at what their plans are when it comes to EV innovation, invention and implementation.

Mazda

Mazda MX 30 EV

Mazda is planning to introduce ‘Skyactiv Multi-Solution Scalable Architecture’ for hybrids, PHEVs and EVs in 2022, and they plan to offer three EV models, five PHEV models and five hybrid models sometime between 2022 and 2025.  Mazda will also keep hybrids and PHEVs as part of their saleable new cars beyond 2030.

By the end of 2023, Mazda plans to show at least two plug-in hybrids by the end of the year.

In 2026 Mazda plans to show the platform for a new generation of EVs in the early part of the year.

By 2030 Mazda plans to offer a hybrid or electric variant for every model that Mazda has in their line-up.  However, even though Mazda will develop a dedicated EV platform by 2025, Mazda’s majority of vehicles beyond 2030 will be hybrids and plug-in hybrids, and, as such, Mazda is not about to stop developing its internal combustion engines anytime soon.

Honda

Honda EV Crossover

Honda plans to develop its own solid-state battery tech, rather than relying on outside developers.

By 2023, a Honda EV built in partnership with GM, reportedly a crossover, is expected to enter production.

Honda foresees that 40% of their models will be electric or hydrogen fuel-cell powered by 2030, climbing to 100% by 2040.  Honda is one of just a handful of automakers alongside Toyota, Hyundai, and BMW, to devote plenty of their development energy into to hydrogen fuel-cell vehicles.

Toyota

Toyota BZ EV Concept

By 2025, Toyota plans to launch 60 new hybrid, electric, or fuel-cell vehicles by the end of that year, and it also expects to have reached its goal of selling 5.5 million EVs each year.  Their dedication to hydrogen fuel-cell vehicles is strong, and they remain big game players in this sort of technology.

Looking across the Tasman (where NZ’s PM, Jacinda Ardern, put her foot in it by claiming that Toyota would be providing EV utes in just 2 more years) it is evident that Toyota will not be putting all their eggs in one basket and going totally bent on EV production.  Toyota is adamant that a slow EV uptake is more likely, and hence they would not be giving up on their particularly good hybrid engine technology any time soon.

Nissan

Nissan ids Concept EV

Nissan is the manufacturer of the highly successful Nissan Leaf EV Hatchback, which has been in production for some years now.  By 2023, Nissan plans to have launched eight EVs by the end of the year and will be hoping to be on target to sell 1-million hybrid or electric vehicles, globally, per-year.  Nissan states that their hybrid technology and their technology to improve their internal combustion engines won’t be stopping before 2030, at least.

Mitsubishi

Mitsubishi Outlander PHEV

Mitsubishi has the marvellous Outlander PHEV, which has been in production for many years now.  By 2030, Mitsubishi plans for 50% of its global sales to come from hybrid or electric vehicles.  I guess that leaves 50% to be still made up of efficient internal combustion vehicles.

Subaru

Subaru Solterra EV Concept

Subaru, by 2030, expects 40% of its global sales to come from hybrid or electric vehicles.  By 2035, Subaru plans to have a hybrid or electric version of every vehicle in its line-up.  Subaru seems to be singing off a similar song sheet to Toyota, where they both suggest that the hybrid vehicle will prove to be more popular in the short term, particularly as the EV infrastructure has a long way to go.

By 2050, Mazda, Mitsubishi, and Nissan have made bold plans to reach net-zero carbon emissions.

The big questions are: Will the EV-charging infrastructure match the manufacturer claims?  Will people be able to afford an EV, let alone the huge cost to make their home charge ready, as the ideologically bold demands that some governments introduce along with big taxes?  Who is going to pay for all of this?

I read a recent comment where a reader of ‘Car and Driver’ made a very informed comment:

“It’s a ‘no thanks’ on Li batteries from me.  Lithium extraction has already spoiled the Atacama desert in Chile and now they have their sights set on the American West.  I can reduce my CO2 footprint far more by just driving less than by purchasing a 100 kWh battery, and the 10-20T of CO2 that was released to make it. I’ll wait for fuel cells.  As a Toyota driver… I have time.”

Leaving the Past Behind

Over the last decade an array of features has been evolving expeditiously in automotive circles.  New cars that we drive today are vastly different to the cars that were driven 10 to 15 years ago.  Technology has come on very quickly, and so too has the world that we live in.  Today we have amazing things like online streaming, extensive EV models, the invention of the Android phone, accident avoidance, adaptive cruise control, infotainment everything, GPS tracking, Rover on Mars… The list is long.  What big features are found in today’s new cars that weren’t part of the package in an equivalent new car bought back in the noughties?

Here are just some of the changes:

Parking Assist

With the introduction of cameras around the outside of the car (the most common, of course is front and back), backing into small spaces, parallel parking or even just checking your blind spot have all become much easier tasks to perform about town, at home and up the neighbour’s tricky driveway.  Rear-view cameras have made a big impression to the level of satisfaction enjoyed by customers across all car models for some time; it has been a real winner.  360-degree cams, a bird’s eye view camera and integrated dash cams are also making their way on-board.  Citroen C3’s Connected-CAM gives you a recording through the dash cam, which, should you be involved in a collision, may vastly help in making your insurance claim run smoothly.

Information and entertainment

Put these two words together and we get ‘Infotainment’, and this word originated from the infotainment systems that we now find as standard features of almost every new car on the market.  Our huge desire to be connected with the internet and with others seems insatiable, and 10 to 15 years ago the luxury of a CD player and cruise control are now pretty standard items for new base level cars.  The impressive growth in Social Media and instant messaging has created a huge vacuum for car designers to fill, so developing systems inside their cars to keep up with this growing trend to satisfy their customer’s hankering for media and phone connections is a must.  The Auxiliary socket, the Bluetooth connectivity feature, built in hard drives and now the ability to stream our library of music through our entertainment screens have all become pretty common on a new current model of car.  Voice activated controls, bluetooth connectivity, Apple CarPlay and Android Auto are all recent features that have been designed to keep a vehicle’s driver and occupants constantly connected to people and information.  I don’t think it’s such a great thing to have mobile phone connections inside a car, but then I like driving for driving sake, so who am I to pass judgement.

Crash Avoidance Systems

Since the 1st of November 2014, Europe took a major step forward in mandatory safety features.  In addition to standard electronic stability control systems, all new cars sold in the EU had to be equipped with new safety features like the driver’s seatbelt reminders and ISOFIX child seat anchorage.  As of March 2018, all car manufacturers were required to install eCall, an automatic emergency call system, which reduces the time it takes for an emergency response team to arrive at the scene of the accident.  And, since 2014, auto manufacturers has picked up even more so on the importance of top safety credentials being a consumer’s expectation, and so massive developments in driver assistive technology started to find their way into new cars.  Collision Warning Systems, Pedestrian Alert, Automatic Braking, Blind Spot Information and Cross Traffic Alerts were incorporated to avoid common causes of road traffic accidents.  These are features I do applaud, though I wish there was a way to stop people being so fixated with their mobile phones when travelling in the first place!

Keyless entry, keyless Start and Stop systems, alarms and warning systems are all examples of ever-developing security systems that we find on the new cars today.  And these days you will be struggling to find a vehicle without some sort of satellite navigation connection (a possible cause of many car accidents).  Platforms like MirrorLink, Apple CarPlay and Android Auto all allow you to display your maps on your actual car display screen in the centre of the dash (as well as the digital driver’s display on flash cars like an Audi or Mercedes Benz) and the phone’s audio connectivity allows for verbal instruction via voice commands and control.

Have we moved on?  Yes we have, but then the hard task master applying the pressure to always having to come up with something new in order to make more money is an evident presence in all of this.  I wonder if a simple crash avoidance system for those nasty severe head-ons would be a simple barrier down the centre of most major highways and to stay off the phone…

When ADAS Features Fail

I don’t quite know why I’ve become more attentive to learning about a car’s ability to protect its occupants in the event of a collision, along with its ability to avoid the collision altogether in the first place.  I expect it has a lot to do with having close family members who occasionally need to drive themselves places.  Advanced Driver-Assistance Systems (ADAS) are growing in popularity.  ADAS systems can help prevent accidents not only at speed, but also when parked as a stationary car.  ADAS features are designed with one purpose in mind and that is to increase driver and occupant safety.

ADAS features include things like automatic emergency braking, blind spot detection, collision warning systems, cross-traffic alert, forward and rear collision warning, lane departure warning, lane keeping assist, park assist, pedestrian detection and avoidance systems, cyclist detection and avoidance systems, road sign recognition, active radar cruise control… and the list goes on.  ADAS employs cameras and sensors to detect a potential collision or event and then proceed to activate systems of avoidance if necessary.  These are important safety features which help prevent accidents.

Research on insurance claims that was carried out by LexisNexis Risk Solutions showed that vehicles involved in incidents that had ADAS on-board exhibited a 27% reduction in the frequency of claims made for bodily injury.  The results also showed that vehicles that had ADAS on-board exhibited a 19% reduction in the frequency of claims made for property damage.  Obviously, this would suggest that the systems must be doing some good.

A study by the Insurance Institute for Highway Safety (IIHS) revealed that the crash involvement rate for vehicles with blind-spot monitoring was 14% lower than for the same vehicle without the equipment.  Researchers also stated that the study also suggested that if every vehicle sold in the US in 2015 was equipped with blind-spot monitoring, 50,000 crashes and 16,000 crash injuries might have been prevented.

At present, one of the big downsides of the ADAS features is that they are darn expensive.  Not only do they put the price of a new car up, they also make the car costlier to insure because if any of the systems gets damaged the insurance and repair bills are usually eye-watering.  Hopefully, ADAS features will come way down in price and become similar to standard computer software and technology which is, on the whole, a dime-a-dozen now.

The other thing is that I hope ADAS will function 100% of the time correctly as intended, because vehicles designed to be able to automatically brake for objects such as other cars, pedestrians, and cyclists, and to drive themselves inside highway lanes without driver input, is not an exact science.  A slightly frightening example of my concern here is when Volvo was demonstrating its pedestrian AEB technology to journalists in 2016.  Volvo used their V60 model in the demonstration, where it was travelling toward a dummy named Bob.  The V60 didn’t detect Bob being in the way, and so Bob was hit in what was a controlled environment.  An alert driver in the V60 may well have returned a better outcome.

Then shortly after, another Volvo V60 was demonstrating its collision detection and avoidance system where it was to avoid hitting a stationary truck.  The failure to detect and avoid the collision can be seen here: https://www.youtube.com/watch?v=aNi17YLnZpg

Again, an alert and competent driver could well have resulted in a better outcome, should this have happened in the real world.

In 2018, the IIHS took five new vehicles and tested them.  The Tesla Model 3, the Tesla Model S, the BMW 5 Series, the Mercedes E-Class and the Volvo S90 were the test vehicles.  Each vehicle’s AEB, adaptive cruise control and lane-keeping assist systems were tested.  Some of the problems IIHS encountered was that the AEB didn’t actually work in some vehicles in some circumstances.

In other tests, the IIHS observed: “The BMW 5-series steered toward or across the lane line regularly, requiring drivers to override the steering support to get it back on track.  Sometimes the car disengaged steering assistance on its own.  The car failed to stay in the lane on all 14 valid trials.  The Model S was also errant in the hill tests.”

Sadly, just a couple of years ago an autonomous Uber fitted with even more sensors than any standard ADAS-equipped road car killed a pedestrian at night in the US.  This happened while researchers and designers were conducting public testing.  What this suggests is that the ADAS technology is amazing and good enough to be placed into new cars.  However, it doesn’t mean ADAS will always work as intended, and it does point to the fact that drivers must still always be fully alert at the wheel.  If the driver is not fully alert, the outcome from these system fails can sometimes be way worse than if the driver was fractionally slower to manually override the systems detection time and action times.

I’ve heard of numerous occasions when vehicles have falsely detected situations.  A more common fail is when accident emergency braking (AEB) engaged on-board a car when it shouldn’t have, which meant that the AEB stopped the vehicle abruptly and unexpectedly on a clear road.  At the time, traffic is still coming up behind the vehicle.  Lane keep assist isn’t always that great either, and the results of a high-speed mishap on a main highway is tragic.

ANCAP is Australian’s big car-safety tester, and a recent representative suggested that AEB and lane-keeping assist technology, which is where the car will steer itself, was beginning to be put under the microscope.  This would test for how accurate the system actually is, and if it would actually do the opposite and steer the vehicles into a dangerous situation.  Testing ADAS features should take priority over just saying that the technology is available in the car at the time of crash testing, whereby the appropriate ADAS feature box is ticked and the job done.

ADAS mostly works for the better.  It does raise obvious safety problems, particularly when manufacturers have all the pressure to pack in as many ADAS features into their vehicles as possible for as little cost as possible to remain competitive on the sales front.  This pressure would suggest that these systems could be prone to potentially become unsafe.

With cars loaded with ADAS features, you could also say that drivers of these new vehicles might be tempted to hop on the mobile phone to check messages once they have activated the adaptive cruise control and lane-keep assist systems.  Essentially, it becomes easier to break the law; which takes us back to the point that we shouldn’t rely heavily on ADAS technology because it can fail to work.  We don’t often hear this preached at the car sales yard or on new-car adverts.

In Australia, features such as antilock brakes (ABS) and electronic stability control (ESC) are mandatory in new vehicles that are sold to the public.  These mandatory requirements are set to be pushed to the next level, where automatic emergency braking (AEB), adaptive cruise control and lane-keeping assist would have to be on-board any new vehicle being sold to the public.  Even alcohol detection devices may well be part of these standard requirements.  Europe is set to introduce some of these requirements over the next few years, and Australia is likely to follow the lead.  Newly imported European cars would end up with these features anyways, a win-win for us new-car buyers.

ADAS is good, but we still need to drive our cars.

Small Overlap Crash Test

The influx of all the amazing new electronic safety aids and crash avoidance systems found on-board new cars has been exceptional.  There is no doubt that these systems are helping save lives and minimising injury.  There has been one part of the latest car crash testing regime that the Insurance Institute for Highway Safety (IIHS) has brought in as part of their testing in order to help make cars safer.

The IIHS is an independent, non-profit scientific and educational organization dedicated to reducing deaths, injuries and property damage from motor vehicle crashes through their ongoing research and evaluation, and through the education of consumers, policymakers and safety professionals.  The IIHS is funded by auto insurance companies and was established back in 1959.  Its headquarters is in Arlington, Virginia, USA.  A lot of what the IIHS does is crash test cars in a variety of ways to gather data, analyse the data, and observe the vehicles during and after the crash tests to quantify how safe each car is.  The results and findings are published on their website at IIHS.org.  Car manufacturers have been forced to take these tests seriously because, at the end of the day, these results matter and will affect car sales as the public become informed about how safe their cars will likely be in the event of an accident.

Since 2012, the IIHS has introduced a couple of new tests that they put the vehicles through to see how safe they are in an event of small overlap collision.  The driver-side small overlap frontal test was brought about to help encourage further improvements in vehicle frontal crash protection.  Keeping in mind that these IIHS tests are carried out using cars with left-hand-drive, the test is designed to replicate what happens when the front left corner of a vehicle collides with another vehicle or an object like a tree or utility pole.  This crash test is a challenge for some safety belt and airbag designs because occupants move both forward and toward the side of the vehicle from the time of impact.  In the driver-side small overlap frontal test, a vehicle travels at 40 mph (64 km/h) toward a 5-foot-tall rigid barrier.  A Hybrid III dummy representing an average-size man is positioned in the driver seat.  25% percent of the total width of the vehicle strikes the barrier on the driver side.

Most modern cars have safety cages encapsulating the occupant compartment and are built to withstand head-on collisions and moderate overlap frontal crashes with little deformation.  At the same time, crush zones help manage crash energy to reduce forces on the occupant compartment.  The main crush-zone structures are concentrated in the middle 50% of the front end.  When a crash involves these structures, the occupant compartment is protected from intrusion, and front airbags and safety belts can effectively restrain and protect occupants.

However, the small overlap frontal crashes primarily affect a vehicle’s outer edges, which aren’t well protected by the crush-zone structures.  Crash forces go directly into the front wheel, the suspension system and the firewall.  It is not uncommon for the wheel to be forced rearward into the footwell, contributing to even more intrusion into the occupant compartment, which often results in serious leg and foot injuries.  To provide effective protection in these small overlap crashes, the safety cage needs to resist crash forces that haven’t been amplified, concentrated on one area or aren’t tempered by crush-zone structures.  Widening these front-end crash protection structures does help.

The IIHS also performs the passenger-side small overlap frontal test.  The passenger-side test is the same as the driver-side test, except the vehicle overlaps the barrier on the right side.  In addition, instead of just one Hybrid III dummy, there are two — one in the driver seat and one in the passenger seat.

Automotive manufacturers initially responded to these driver-side small overlap test results by improving vehicle structures and airbags, and most vehicles now earn good ratings.  However, IIHS research tests demonstrated that those improvements didn’t always carry over to the passenger side.  Discrepancies between the left and right sides of vehicles spurred the IIHS to develop a passenger-side small overlap test and begin issuing passenger-side ratings in 2017.

It is good that vehicle safety always seems to be on the improve and, with each new model, the new-car buyer can expect a safer vehicle.  Thanks to crash testers like the IIHS, ANCAP and Euro NCAP, we are experiencing safer cars on our roads.

Materials used for Seating in Modern Cars

If you’re looking to by a new car, one of the most important things to consider, aside from practicality, safety, and exterior looks, is its interior.  The interior is important because this is going to be where you spend most of your time with your new car.  You are going to want it to look great and feel comfortable, so, obviously, the seats are massively important.  Here are the types of seating materials and a bit of info on each type so that you may be better informed when it’s time for your new upgrade.

Nylon Car Seats

If the car has fabric seats, then it is more than likely going to be nylon or polyester material.  Nylon is one of the most common car seat materials that car upholsterers use, and you’ll often find it trimming the base and lower trims of the particular model of car that you are looking to buy.  Nylon has very good durability and is also resistant to heat.  Because of its stretchability, the seats can also be quite comfortable to sit in, but essentially the comfort comes down to how the car manufacturer has designed the seat’s internals.  Nylon materials aren’t that expensive to produce, so car manufacturers like to use this lower cost material.  A good vacuum cleaner with a soft-bristled brush easily tidies them up and, if a spill occurs, the nylon can be cleaned relatively easily with warm soapy water or a decent upholstery shampoo.  Nylon is porous, so what gets spilled on the seats can work into the cushion structure.

Vinyl Car Seats

Vinyl is also commonly used in car seat upholstery and it is also quite affordable to use in car manufacturing.  Vinyl is very easy to clean and maintain and it also mimics leather in its looks.  Vinyl is not very porous either, so dirt and dust doesn’t easily make its way into the seat’s internals.  You can usually just wipe the vinyl upholstery with a damp cloth in order to clean it effectively.  It also vacuums easily.  Vinyl will get hot in the summer, so darker colours will absorb the heat and transfer the heat very quickly onto your bum – you have been warned!

Leather Seats

Leather upholstery is what you will find in premium models.  It is an expensive material to use and looks amazing.  Leather is a porous material and also stays cooler in the summer than its cheaper vinyl cousin.  One of the drawbacks of leather upholstery is it does require the correct cleaning and maintenance products.  If the wrong products are used, then the leather will fade and harden.  Salt and leather don’t go well together – often a forgotten fact as people jump back onto the leather seats in wet togs after a swim at the beach.  Leather is a tough material and therefore durable, however when it does get damaged (e.g., damage caused by sharp objects or salt) it can be difficult to fix.

Faux Leather Car Seats

Faux leather or artificial leather is a commonly used material in modern vehicles.  It looks classy but is less expensive than the real thing.  Faux leather is also easy to clean and waterproof but doesn’t breathe like standard leather and can also get hot in the summer!

Alcantara Car Seats

Alcantara is a suede-like car seat material that is made from 68% polyester and 32% polyurethane.  Alcantara is a premium material, very durable and looks amazing.  It is also expensive, gets dirty relatively quickly, and can fade quickly.

Polyester Car Seats

Polyester is a material called microsuede, and it looks and feels similar to normal suede.  It is also similar to Alcantara.  Polyester is a cheaper alternative to Alcantara and is comfortable.  It isn’t considered quite as premium as Alcantara because it is not that easy to clean, and it is a fabric prone to picking up the dirt quite easily.  You have to gently use a soft fabric cleaner with a damp cloth to clean the seats otherwise it can damage.  Water and other liquids also stain the fabric quite easily.