As seen on:

SMH Logo News Logo

Call 1300 303 181

Australia’s Best New Car News, Reviews and Buying Advice

Sustainability/Green

The Stanley Steamer

Now that electric cars are becoming more popular, and there’s talk about hydrogen fuel cell vehicles, our attention has been turned to what’s powering our cars.  In this context, it’s interesting to one of the solutions used in the past as an alternative to petrol or diesel power: steam.

One of the inventors of the Stanley Steamer and his wife driving in his invention.

A good friend of mine, during a discussion on fuels, EVs and similar topics, wondered whether steam could be used to drive a car.  I was sceptical, but it turns out that I was wrong. A little over 100 years ago, steam-powered cars were indeed a thing.  They aren’t just a steampunk fantasy, as I had thought.

One of the most popular type of steam-powered cars was invented by the Stanley twins in the USA at the end of the 19th century. Bizarrely, F.E. and F.O. Stanley also invented one of the first photographic airbrushes, as they started their business ventures in the area of photography.  However, automobiles were a lot more interesting, and they started the Stanley Motor Company in 1902 after an earlier attempt with a company known as Locomobile. 

At that time, many internal combustion engines that ran on petrol or diesel needed a crank to start them up.  These cranks were tough to turn and required a fair bit of elbow grease.  They could even be dangerous, as if the car backfired while someone was cranking it, this could leave the person doing the cranking with a broken arm.  However, the Stanley Steamers used gasoline (petrol) to generate a good head of steam, which provided the power to turn the wheels, and they didn’t need cranking.  Stanley Steamers were designed with safety in mind, as they had a system in place to prevent the boiler from exploding if too much heat and pressure was generated.

For its time, the Stanley Steamer had some fairly impressive specs.  It was a rear wheel drive affair, and didn’t require a transmission or clutch system, meaning that they were easier to drive.  The power output varied depending on the engine type.  The basic model (the compact engine) could deliver 7.5 kW.  Two twin-cylinder engines were developed, the smaller one (3¼-inch bore and 4¼-inch stroke) also put out 7.5 kW, but the larger one (4-inch bore and 5-inch stroke) delivered a massive 15 kW.

For its time, the Stanley Steamer was quite fast.  In fact, a customised version of the Stanley Steamer known as the Stanley Rocket Racer became the holder of the world land speed record for automobiles over a mile, clocking up 204 km/h in a trial at Daytona.  This record stood for five years, and remained the best time over a mile for a steam-powered car until 2009.

As time went by, the Stanley twins refined their design, switching to lightweight aluminium bodywork and features such as condensers that harvested the steam so that the range of the water tank could be extended. 

However, the makers of cars with internal combustion engines managed to find an alternative to the crank: the electric starter motor. This meant that the drawbacks of cranks were no longer, and the Stanley Steamer lost its biggest attraction, especially with the rise of cars produced via mass production and sold cheaply, Ford being the best known example of these.  The Model T cost less than a quarter of the price of the Stanley Steamer and the engine of even the base model, which ran on petrol, kerosene or ethanol (now, that’s an idea worth revisiting), had the same power output as the best of the “Flying Teapots”, as the Steamers were known.

Given the stiff competition from the internal combustion engines inside the Model T and similar vehicles, things didn’t look good for the Stanley Steamer. Eventually, after one of the twins died (in a car crash, of all things), the company went under, ultimately closing in 1924.

The Stanley Steamer wasn’t the only steam-powered car in existence.  Others have been made and sold, especially the Doble, and the idea has come back now and again over the past century or so, especially given concerns over pollution and the availability of fuel.  Saab had a go at making a steam car in the 1970s during the fuel crisis of that decade (the project failed, unfortunately).  An Australian inventor and enthusiast named Ted Pritchard tried to develop one in the 1960s and beyond and had some success.  Until he died in the early 2000s, he was pushing for the use of steam-powered cars. 

External combustion engines (which is what a steam engine is) aren’t as efficient as ICEs but they produce a lot less pollution, as they don’t burn as much fuel.  They are heavy, thanks to the need for a strong boiler and a water tank.  They can accelerate quickly once they’ve got a good head of steam up, but they do need a fair bit of time to boil and let the pressure build; this is one of the things that experimenters wanting to bring back the steam car try to work on.

And what about the future?  Given the push towards vehicles that are less dependent on petrol and diesel, will we see attempts to make the steam car come back again?  Electric cars have made a comeback (and how!), so perhaps steam will do the same. 

What Is Synthetic Fuel?

You’ve probably heard that the way that the oil and gas fields that produce the petrol and diesel we put in our internal combustion engine (ICE) cars were once ancient forests that were somehow buried and transformed into the form they are in today.  You may have wondered whether it would be able to make something chemically identical to crude oil or refined oil in the lab, given that we know the chemical formula for petrol and diesel.

Well, you aren’t alone in wondering whether that could be possible. The truth is that it is possible to make petrol and diesel artificially in the lab without taking the aeons of time involved in fossil fuels.  The result is called synthetic fuel or synfuel.

Synthetic fuel differs from biofuels such as ethanol because it is designed to be completely chemically identical to ordinary bog-standard fossil fuel petrol.  This means that it can be used as is in a car with an unmodified internal combustion engine without being blended, which is what happens with biofuels (you know – E10 is 10% ethanol and 90% fossil fuel petrol).

Synthetic fuel is nothing new. In fact, the idea of making petrol for cars (and planes) from something else was tried successfully back in 1930s Germany, except that they used coal as their starting feedstock.  This was one reason why the German army was such a threat during World War 2: they could manufacture their own synfuel out of coal, which they had, rather than relying on oil wells overseas and the associated supply chain.  However, this method is unlikely to be used these days, as coal is still a type of fossil fuel and wouldn’t suit the purposes.  

The process of making synthetic fuel or synfuel starts with the very common gas hydrogen. The hydrogen is then combined with carbon (carbon monoxide) to make syngas (chemically identical to natural gas but made artificially). This is where the exciting part of synfuel comes in, as the process can either take the carbon from some source or it can even capture the carbon out of the atmosphere. This means that when the synfuel is used in an internal combustion engine, the carbon is just going back into the atmosphere where it originally came from rather than adding new carbon. (OK, you could argue, like one of my relatives does, that what’s in fossil fuels was originally in the atmosphere when that ancient forest was green and growing, but that’s another topic and another debate altogether that I won’t get into here.) Anyway, syngas is made up of hydrogen and carbon molecules (it’s a hydrocarbon, as opposed to a carbohydrate) and can be messed about with to make different types of fuel, including petrol.

The three main ways of producing synfuel are biomass to liquid, power (or electricity) to liquid and sun to liquid.

The biomass to liquid process uses organic matter as a feedstock, which provides the hydrogen and the carbon. This organic matter doesn’t have to be an oil-producing crop, which is what happens with some types of biofuel.  Instead, agricultural waste matter can be used as a feedstock, as can domestic waste. In fact, if the idea of synfuel catches on and becomes more widespread, they’ll be able to use what’s in the landfills and what we chuck out. This avoids the problem of deciding whether good crop-producing agricultural land should go to producing an oil crop to power internal combustion engines or to producing food. This type of synfuel can be referred to as biofuel, although “biofuel” is a confusing term that covers ethanol as well as biodiesel, so it’s best avoided.

Power to liquid production produces the type of syngas known as e-fuel. In this process, electricity (which can be generated by renewable means, such as wind or solar) splits a water molecule to get hydrogen and oxygen, and the hydrogen is then combined with carbon from the atmosphere. The main byproduct is oxygen, and if the process can use renewable sources of energy, then it’s as close to carbon neutral as petrol can be.

Sun to liquid production is less common. In this process, a reactor catches the heat energy of the sun (not photovoltaic energy or solar power) and uses that energy to convert water and CO2 into syngas.

I think it’s highly likely that synthetic fuel is going to become more common, as a lot of us know that ICE vehicles suit our lifestyles and needs best (tradies, for example), who can’t afford to take large chunks out of their working days to recharge, travel a lot and need something that will take all the gear needed for their work.  This is because Formula 1 racing is planning to use it to power all its ICE racing cars, hopefully by 2026.  We’ve seen a lot of technology that started off in the racing world making its way over to general use, so let’s keep our fingers crossed.  In addition, Porsche has bankrolled a synthetic fuel plant in Chile that uses wind power and the power-to-liquid method.  This opened at the end of last year (2022) with plans to produce 11,000 barrels of synfuel this year.

Given that Australia has a lot of sunshine and the potential for using it for either the sun-to-liquid or the power-to-liquid process (with the help of solar panels), it’s not surprising that they’re setting up a plant in Tasmania (funded by Porsche again), which is due to kick into action in 2026.  Watch this space!

What to Look for When Buying an Eco-Friendly Car

With emissions concerns becoming an ever-growing concern among new car buyers, many motorists are turning to eco-friendly cars in the hope they not only reduce their carbon footprint, but also lower their operating expenses as well.

As motorists start to see a wider range of eco-friendly cars pop onto the market, consumer choice has been broadened significantly, even if still some way behind internal combustion engine (ICE) vehicles.

photo-1583950717915-15703377a71e

Hybrid vehicles

Hybrids offer the best of both words as far as petrol and electric. The general notion is that the car will switch between the two systems in order to maximise efficiency.

For example, when the car is stationary, accelerating or driving at a low speed, the electric engine will kick in. While cruising at a higher speed, however, the petrol engine starts to take over and power the car. The petrol engine can also recharge the battery itself, which means you don’t have to be sitting at home or a designated charging spot waiting to recharge your car before setting out on your journey.

Electric vehicles

Meanwhile, electric vehicles are starting to see their penetration increase just like hybrid vehicles did a few years ago.

EVs rely exclusively on battery-power and charging, which has been a deterrent to many because of the limited range and infrastructure to cater to this. At the same time, charging points at home aren’t necessarily as economical as one might hope in this day and age. But both of those factors are improving.

Improvements to the range of electric vehicles have allowed them to drive further than previously possible. Long gone are the perception surrounding the limited driving ranges of first-to-market EVs. However, despite potentially lower ongoing running and maintenance costs, EV purchase prices have yet to truly become accessible to the mainstream consumer.

What to keep an eye on

One of the key measures as to how eco-friendly or green a vehicle is based on their emissions output.

Hybrid vehicles are still associated with emissions because of their dual functionality, while electric vehicles may also be tied to some emissions where the source of electricity charging the vehicle is not renewable. For example, one might argue that coal-generated electricity defeats the point of an EV.

The ratings for emissions outputs also vary in the real world compared with in lab or track testing. It’s one thing for manufacturers to spruik certain numbers based on ‘perfect’ conditions, however, outside of that bubble we all know that things are never quite the same in the real world.

Let’s not also forget that, ‘Dieselgate’, one of the biggest controversies in the motoring industry related to such discrepancies, even if related to diesel-powered vehicles.

Last but not least, uptake for both hybrids and EVs is a gradual process at this stage. Prices are still elevated, particularly when compared against other international markets where these vehicles have yielded greater uptake.

A large part of that is attributable to government policy and support, however, for motorists looking to make the early switch, there are benefits associated with lower operating expenses, but one must ensure they can afford to purchase or finance what are dearer vehicles to begin with.

One Thing They Don’t Tell You About EVs When The Rubber Meets The Road

The thing that a few of the proponents of EVs don’t often tell you about is about the tyres.  They’ll tell you about how EVs produce less in the tailpipe emissions department and about how quiet they are and how much better the range is these days, but if you’re new to the world of electric vehicles, you may be in for a surprise the first time you have to change the tyres.

What they don’t tell you is that EVs need special tyres and fitting the sort of tyre that worked perfectly well for an ICE vehicle of the same size or even the same weight won’t work on an EV. The tyres on an EV have to cope with a number of the characteristics of electrical motors. Specifically, the tyres have to cope with the increased torque, the weight of the battery pack, the need for better energy efficiency and the need to reduce road noise.

Because electric motors behave differently from internal combustion engines, they have much higher torque figures. Torque, as we should remember from our high school physics class, is rotational force (as opposed to linear acceleration), so it bites in where the rubber hits the road – literally.  The more torque, the more force is applied.  Now, I like a good bit of torque in a motor, but tyres don’t like it as much, and too much can wear them out more quickly. This means that an EV has to have tougher tyres. They also have to have more grip to avoid slipping when accelerating, especially in wet or slippery conditions.

On top of that, the tyre has to handle the increased weight. You might not realise this, given that most EVs tend to be smaller urban vehicles (although this is changing).  However, EVs weight more because of the battery pack. In fact, the battery pack can make up to quarter of the weight of an EV – and yes, this outweighs the bits that aren’t in an EV, such as the radiator, the fuel tank, the exhaust system and so forth. The battery pack also needs to be protected against mechanical damage (such damage is very bad news for the battery and is the leading cause of electrical car fires). This extra weight applies to hybrids as well as to purely electric vehicles (battery electric vehicles or BEVs). This means that the sidewalls on the tyres for EVs need to be stronger and heavier to carry the weight.

These two factors alone would be enough to indicate that putting regular tyres on an EV or hybrid vehicle is a bad idea, as the tyres would wear out more quickly – a lot more quickly! In fact, some have argued that if you are concerned about the environment, you should bear in mind that although EVs produce less from the tailpipe, they create more particulate matter from tyre wear. This is why several of the big-name tyre manufacturers have created special tyres for EVs.

If you’ve ever looked at the tyres made specifically for EVs, you may notice that they are taller and thinner. This is to decrease the rolling resistance.  Going back to high school physics once more, something that’s heavier has more inertia and thus requires more force to get moving (think about how easy it is to kick a soccer ball rather than a medicine ball).  Naturally, a tyre that’s stronger and more resistant to wear will be heavier, which would mean more inertia and thus rolling resistance. Making the tyre narrower will reduce the drag and thus the rolling resistance. This is important, because if you have waited half an hour to charge up your EV from a public charging station, you want that charge to last as long as possible before you have to do it again, so reducing the drag and the rolling resistance will be more energy efficient.

Lastly, there’s the noise issue. In an ICE vehicle, the rumble of the engine drowns out the road noise.  In an EV, there is no rumble, so road noise is the only thing you can hear.  Road noise isn’t quite as soothing as engine noise (most of the time), and that’s the only thing that you can hear in an EV, especially if you’ve switched off the sound system to save power and extend the battery range.

You can put tyres designed for other cars on EVs and hybrids, but three things need to be borne in mind.  Firstly, you have to be sure to get something that can handle the extra weight.  Secondly, a regular tyre will reduce the range of the battery.  Thirdly, the tyre will wear out a lot more quickly, meaning that you won’t actually save anything by putting regular bog-standard tyres on an EV. 

It’s best to put the proper tyres on an EV, as you will get better range and longer tyre life out of them.  Admittedly, these tyres are more expensive (like performance tyres on a splashy sports car).  They will also wear out more quickly, but not quite as quickly.  This is something that tyre manufacturers such as Michelin are working on but you will have to factor in if when deciding if an EV is right for you and your budget.  Despite being built tougher, these tyres still need to be maintained correctly – checking the pressure and rotating them regularly.

As with all things, the issue of battery weight and tyre wear are things that researchers are looking into and trying to improve, so we can look for things to get better (and hopefully cheaper) as time passes.