As seen on:

SMH Logo News Logo

Call 1300 303 181

Sustainability/Green

Australia’s Most-Loved Utes Will be Going Hybrid

Earlier this year, Toyota set the benchmark when it announced that its much-loved dual-cab ute, the HiLux would be produced in hybrid format by the end of this decade. Although a long way off, it certainly set the scene for plenty to get excited about, with electrification here and here in a big way, and only set to gain more traction as time goes on.

We’re actually somewhat optimistic that Toyota will be able to fast-track the development of a hybrid HiLux given the tailwinds in effect pushing manufacturers to accelerate the transition to more environmentally-friendly cars. So while Toyota has flagged until the end of the decade for a hybrid HiLux, that may well be the case for the company’s entire model range, rather than it’s best-seller.

Toyota has been on record as saying it believes hybrids will be one of the dominant forms of vehicle over the short-term, while also representing a major chunk of the new car market down the track.

Ford joins the party with the Ranger

Australia’s other favourite ute, the Ford Ranger, is also set for an electrified future.

The blue oval brand has confirmed it will develop a hybrid Ranger, alongside a hybrid Everest four-wheel drive, with the jointly-developed pair set to be engineered locally in Australia and assembled out of Thailand.

Pleasingly, Ford is on a fast track to production, aiming to have the duo rolled out overseas by 2024, targeting countries where emissions targets are driving the push to green vehicles. Although that date does not extend to Australia at this stage, there is likely to be pressure over the coming years, particularly on a political front, that will hasten the need for more hybrid and electrified vehicles down under.

This development could very well play into the cards of a hybrid Ranger arriving much sooner than the timeline provided by Toyota. If that looks likely, watch out, because Toyota may well throw down the gauntlet to compete with its arch-nemesis on the hybrid battlefield.

It is looking increasingly as though a hybrid Ranger will be offered in petrol-electric format, with countries across Europe and North America now seemingly putting the brakes on diesel emissions.

What’s even more interesting, however, is that the 2022 version of the Ranger has been ‘future’proofed’ to accommodate hybrid power down the track, raising eyebrows about an even earlier arrival. Ford has achieved this thanks to a redesign of the Ranger’s chassis, optimising space under the hood.

 

What does it all mean? The timelines might be quite distant, but we think there could very well be a surprise to the upside in terms of the hybrid development of Australia’s two best-selling cars.

What Is and Isn’t Inside an EV?

What is an EV? What are the obvious things that set an EV apart from the more conventional car that’s powered by an internal combustion engine (ICE)?  And what is an EV like to maintain?

These are just a few of the good questions that might be rattling around in your mind as you consider the possibility of EV ownership.  Let’s face it, most of us probably jump inside our cars and give little thought to what happens inside a car when we drive off.

Let’s start by answering the first question and develop for ourselves an understanding of what an EV is.

The letters ‘EV’ stands for the words ‘electric vehicle’.  EVs don’t have a combustion engine underneath the bonnet, in fact they don’t have a combustion engine at all.  This means that you won’t need to pull over at the gas station to fill your car up with any form of fossil fuel (e.g., unleaded gasoline (91), premium unleaded gasoline (95, 98 or 100 octane) or diesel.  Neither will your car be running on gas (LPG or CNG).  You won’t even have to top your car up with engine coolant or oil for engine lubrication.  Sounds good!

Once you look away from the various processes of mining earth metals like lithium and cobalt (a by-product of nickel and copper mines); neodymium, terbium, or dysprosium (critical metals used in higher powered batteries that can last for longer distances – and everyone wants to be able to last longer) used in EV batteries and electronic componentry, EVs look to be more environmentally friendly and interesting cars to own and drive.

All your power is electronically accessible to your accelerator pedal, and your braking action is processed electronically as well.  When you brake or decelerate, battery power can be reverted back into the battery pack.  Basically, drain the battery in an EV, and you’ll need to plug it into a charging port again before you can get some power for driving about again.  However, that’s nothing new now, is it?

To get power from your house power supply, you’ll need to have a conversion kit built into your home’s power system in order to be able to power up your EV within a suitable time frame, commonly 6 to 10 hours.  More expensive options are available that will enable a quicker charging time.  To get power after commuting around the city, you’re going to require a charging station or a park at work that has a convenient and vacant plug-in port for you to charge your vehicle up again to get home.  There are some other charging stations (and we’ll need many more of these with more EVs running on the road) where you can park up for a couple of hours to recharge or top-up again for your commute home.  If you drive your EV out of town and into the country, you’ll need to be sure that you have enough power between charging ports, because, unlike in a vehicle with a combustion engine, a jerry can won’t get you out of trouble nor will the longest power cord.  I’m not sure what serious Outback off-roading enthusiasts will do if they drive an EV.  Neither am I sure what mobile ‘tradies’ will do when they get caught short on power between towns.

What is missing inside an EV that you have in a common ICE vehicle?

Noise is the first thing that comes to mind.  EVs do without the mechanical noise of the combustion/explosions that takes place inside a working ICE.  What you do get is a very quiet ride with a bit of road noise from the tyres and wind about the bodywork as it slips through the air.  Exhaust emissions are also a non-event.

EVs have no complex clutch or gearing, which means that EVs can accelerate smoothly and quickly, giving you the feeling that you’re driving a sports car.  Instant maximum torque is always accessible.

A purely electric EV has fewer moving parts.  There are only around about 20 moving parts in an electric motor, compared with nearly 2000 mechanical components in an ICE.  The result is that an EV will need less fiddly routine maintenance jobs like changing the engine oil every 10,000km.  You’ll still need to change the tyres on an EV, and you may go through more tyres because of all that instant torque and acceleration.  A pricier tyre made up of a softer compound might also be necessary in order for you to be able to stick to the road better with the EV’s instant and quick acceleration.

You will also need to replace the battery pack, as they do have a life.  This will be the one expensive maintenance bill.  Buy a new EV, and you’ll be able to put this off for 10 years or so.  Buy a second-hand EV, and who knows how long you’ll have before the battery pack will need replacing or you just won’t be going anywhere.

An EV owner will likely also need to pay some sort of road user charge or tax in the not-too-distant future, particularly if more EVs take to our roads.

However, own an EV and you won’t need an ICE tune-up or oil change, and the engine coolant won’t need to be replaced, either.  In essence, an EV has no petrol, diesel or oil.  It has no exhaust, no clutch or gears. It doesn’t have spark plugs, and it has no throbbing combustion noise that you find you get with a V8, a boxer or even a straight six.

As with any car, EVs have both their advantages and their disadvantages.  At this stage, an affordable EV would be a great and enjoyable car for the city environment.

EVs and Rare Earth Mining

Rare earth metals.

Where are all the earth’s rare metals mined?  Are electric vehicles (EVs) really so environmentally sound and friendly?

Rare earths are difficult to find and obtain in most parts of the world, and they are used a lot in all sorts of common and accessible products like mobile phones, cars, aeroplanes, missiles, radars etc.  Rare earths are also abundantly used in EVs.  EVs use special magnets to power their engines, and most of the magnets in EVs that can cover longer distances on one battery charge are made from rare earth metals.  The metals aren’t necessarily rare, but they can be dirty and difficult to process.  Many of the processes related to rare earth extraction (getting the rare earths out of the ground) are dangerous, environmentally unfriendly, and, in many cases, the mining workers are older boys and younger men.  The process to obtain many of the rare earths is environmentally destructive and produces radioactive waste.

Of the 17 rare earths, neodymium is possibly the most needed rare earth in the world right now.  EVs cannot function without neodymium, and lithium – which is currently mostly found in Bolivia.

China has a large portion of the rare earth mining pie and supply network.  Back in 2010, China produced as much as 90% of the rare earths that the world needed, and it now seems obvious to me why China’s economy and infrastructure was booming so much at the time.  Also, around this time, the rest of the world started to see just how China ruled the rare earth market and power struggles commenced.

Without the rare earth metal, neodymium, an iPhone cannot vibrate and wind turbines would not work.  In order for EVs to gain more milage between charges, Rare Earth Permanent Magnets (REPM), which use neodymium, are required.  REPMs are the most powerful magnets currently available.

So, though rare-earth elements are used in trace amounts, their unique properties, which include magnetic, heat-resistant, and phosphorescent qualities, make them essential in the production of products like batteries, car engines, EVs and LCD TV displays.  EV motors, iPhones, military jet engines, batteries, and even satellites all have something in common: They require rare-earth elements to function.

Other elements like terbium, tritium and europium are crucial to targeting mechanisms in all high-tech weaponry systems.  The higher-tech that an EV becomes, a corresponding increase in the level of rare earth mining will be required.  The more EVs that are run on the roads (resulting from strict emission standards and government taxing), the more the rare earth resources will be called upon to build and maintain the EV fleet.  Currently, an EV battery doesn’t last much longer than 10 years, so EV battery replacement requirements will mean that much more rare earth metals will be needed to maintain the ever-growing global EV fleet.

As of 2018, China had 37% of the world’s rare earth deposits.  Brazil currently has 22%, Vietnam 18%, Russia 10% and India has 5.8%. The rest of the world, including the US and Japan, have the rest.

Despite having more rare earth ore than the US, India only mined 3,000 tonnes of rare earths in 2020.  During 2020, the US mined 38,000 tonnes. Meanwhile, Australia mined 17,000 tonnes and China mined 140,000 tonnes.  In 2020, the US had 16% of the production rate of the world’s rare earths; Australia had 7%, and India had 1%.

In 2020, the following countries were the biggest producers of rare earth metals:

China, mine production: 140,000 MT

United States, mine production: 38,000 MT.  The US is also a major importer of rare earth materials, with their demand for compounds and metals worth US$110 million in 2020.  The US has classified rare earths as critical minerals, and it is a distinction that has come about from recent trade issues between the US and China.

Myanmar (also known as Burma), mine production: 30,000 MT.  Myanmar mined 30,000 MT of rare earths in 2020, up from 22,000 MT the previous year.  Myanmar provided 50% of China’s medium to heavy rare earths feedstock.

Australia, mine production: 17,000 MT.  Australia holds the sixth largest-known rare earths reserves in the world.  It is poised to increase its output, where the production of neodymium-praseodymium products is projected to increase to 10,500 tonnes per year by 2025.  Northern Minerals opened Australia’s first heavy rare earths mine in 2018.  Its main products are terbium and dysprosium, the latter of which is used in technology for things like permanent magnets.

Madagascar, mine production: 8,000 MT.

India, mine production: 3,000 MT.  India holds almost 35% of the world’s total beach sand mineral deposits.

Russia, mine production: 2,700 MT.  Russia intends to increase the nation’s share of global rare earths production from the current 1.3% level to 10% by 2030.

Thailand, mine production: 2,000 MT.

Vietnam, mine production: 1,000 MT.

Brazil, mine production: 1,000 MT.

Rare-earths are also mined in South Africa, Canada, Estonia, and Malaysia.

Is an internal combustion engine’s resultant emissions and fossil fuel use really worse than the rare earth metal production mining for EVs and other high-tech electronics?  I would question whether a modern and new internal combustion engine with its catalytic converter to capture any emissions is worse than an EV’s definite connection to negative environmental impact and questionable work-force ethics.

Sometimes it is easier to disregard these pre-showroom EV facts and talk about the post-showroom EVs being so wonderful and environmentally-friendly with their so-called zero emissions.  Perhaps hydrogen-fuelled cars (to a certain extent), solar energy, and, definitely, cars running on biofuels are a sounder transport investment, but I guess money, power and business links still talk louder for some.

EV Revolution

Let’s ditch fossil fuels and crude oil for a while, since some say that oil is considered environmentally unclean and unfit for burning.  So, what about electric?  Which of our earth’s finite resources are needed to make electric vehicles (EVs)?  It will be Tanzania, Venezuela, the Democratic Republic of Congo, Canada or even Brazil who could be the providing the rest of the world with precious raw metals that the greener EV requires.

As electric cars appear to be going mainstream and all our main automotive manufactures look to ditch internal combustion engines (ICEs) by 2025-ish, these big automotive giants have to source and make investments into electric cars and their necessary componentry.  Countries like South Africa, Tanzania, China and even Australia have very mineral-rich and rare metal resources.  These countries and their mining industries are the world’s best environmentally friendly strategy to power EVs and their mass production.

There is a global race on that is driving the demand for countries, including quite a few in Africa, to mine as much of their precious metal resources to equip the world with a greener fleet of vehicles.  This clambering for sourcing all the right stuff for EV production en masse could soon provide billions of dollars into certain countries’ GDP rates.

Rare metals like copper, lithium, cobalt and nickel are some of the most discussed metals in EV production demands.  Other metals like neodymium (a rare earth metal), aluminium and zinc have emerged as some other new resources that will be needed in the rapid quest for a greener world. Statista, a German company specializing in market and consumer data, estimates that the demand for metals such as nickel, aluminium, and iron (all the critical components in EVs) will jump to as much as 14 times the rate that it is now by 2030.  This huge demand for environmentally friendly EV minerals for meeting the green EV car revolution will provide a great cash injection for a well-endowed African state.  Demand for metals like lithium and graphite are also expected to rise substantially, even by as much as 9-10 times by 2030.

The large estimated increase (14x) in demand for the clean EV minerals to meet the intended global EV production rates over the next ten years is accompanied by the need for vehicle battery outputs and infrastructure, which are expected to rise by millions of times over in the very near future.  Even Toyota recently announced a 13.6 billion US investment into electric cars and hybrids, with some 9 billion US dollars to be spent on battery production alone.  This is fantastic news for the environment and carbon zero.

The increase in demand for these rare and hard to obtain metals is pushing top mining and big investment companies around the globe to invest in the acquisition of key materials used in the production of EV batteries, EVs themselves, and their much needed electrical infrastructure.  Solar energy componentry, as well as the EV requirements, all point towards an enormous boom in demand for these rare and hard to reach resources, as well as creating an opportunity to make even more money than the awful and “dirty” fossil fuel endeavours.

It is expected that the sales and production of EVs will continue to accelerate quickly over the next five years.  Big automotive giants who are changing to larger-scale EV production have major mining countries like South Africa, Namibia, the Democratic Republic of Congo (DRC), Tanzania, Zimbabwe and Botswana on their radar.  These are just some of the main African countries, let alone other countries around the world, who enjoy bountiful reserves of some of the world’s most precious metals and minerals: minerals such as gold, diamond, cobalt, iron ore, coal, and copper.  Meeting the demands by governing authorities and their growing appetite for better and greener EVs will be much better for the environment – and for special places like Africa, I’m sure.

President Hakainde Hichilema is the new president for Zambia, and he has recently announced plans to ramp up mining in particular, and to jump-start Zambia’s economy.  Part of his economic plan provides for the rapidly growing EV battery industry, with cobalt and copper identified as key components.  The workforce will be a great place for young men from the age of 15 years old, who will be able to work in the dangerous mining industry.  Countries like Zambia and Tanzania are working hard to supply the developed countries of the world with the rare metals. The developed countries are considered to have a higher status and economic standing, a better understanding of the environment, human ethics, health and emission standards.  Their demand for a green EV world is a good thing for all people and the environment.

As the big green machine, Tesla, and auto giant Toyota are joined by other larger EV-producing manufacturers, African mining countries are going to have to move faster than ever to meet the demand put on them by the governing authorities of the world and their ever-increasing and severe carbon emission goals and standards.  The president of Zambia, Mr. Hichilema, has wasted no time in announcing his administration’s hopes to quickly provide the clean EV battery supply chain and invest much of his country’s proceeds into its development.

Rare metals and their difficult and extensive underground extraction methods are needed in EV lithium ion battery technology and are critical for improving the driving range of electric vehicles so that they can compete with the best, most frugal, “archaic” ICE technology and emission-capturing methods. These rare metals are buried beneath the fields of African nations, ready to be harvested by economically sound, rich and developed countries with zero carbon emission goals and standards.

South Africa, a mining giant, has also announced plans to set up production plants to manufacture EVs of their own, including plants for the manufacture of EV components, such as EV batteries.  This could see South Africa as one of the multi-billion-dollar raw material producers of the world.  South Africa already has its raw material extraction industry, its capital markets, and its existing manufacturing and export infrastructure to build upon.

Environmentally friendly keywords that current governments, economists and greenies around the world are sharing with the public are words like carbon emissions, climate change, EVs, EV infrastructure, mining, metals, zero carbon, clean technology, investment and climate crisis.  All of these keywords correspond with the rising demand for the precious metals used in EV production.

As it stood in 2020, the total global nickel reserves amounted to approximately 94 million metric tons.  Of that amount, it was Indonesia that held the world’s largest share.  Following the tropical and beautiful Indonesia is Australia, with our nickel reserves estimated to be 20 million metric tons.  Best we get stuck in, then!

ICE to EV Conversions

Converting your favourite drive over to electricity seems like a reasonable alternative to buying a brand new EV with a massive price ticket now, doesn’t it?  Flicking through the list of brand new EVs that you can currently buy in Australia soon has you eyeing up figures of well over $50 k.  At the moment, the cheapest EV in Australia is the MG ZS EV with its $45k price tag.  A bog standard Nissan LEAF comes with a drive away price of around $54k.  How about a Tesla?  Anywhere from $65–93k will get you into a Model 3.  Converting an older classic car to full battery-electric power has coolness written all over it.  The end result might even gain you a Greta Thunberg award!

Is it possible?  Can we convert a favourite oil burner to electric power?  If I was to convert my drive to EV, it would have to be a conversion of a favourite car – something like an old Falcon or Commodore.  Bringing one of these ideal cruisers up to EV spec would be a challenge, but a challenge with great satisfaction.  Installing an electric drivetrain into an old vehicle could help keep some classics on the road and out of the scrapyard.  Why not take the restoration, recycling and retrofitting to the next level and repower classic cars?

There have already been a few conversions of this sort of thing in certain areas around the globe, usually in someone’s garage late at night, where the candle burns bright and long into the night.  Considering performance enhancements alone, a good off-the-shelf electric drive system will almost always be a substantial performance upgrade for an old daily driver.  Even some of the muscle car straight six or V8 powerplants are humbled by a rather conventional EV motor with its instant torque availability.

Converting a petrol or diesel car into an electric one means replacing its combustion engine and fuel system with an electric motor coupled with a traction battery. Although the procedure looks relatively straightforward at first glance, it does mean that you do need to apply sound physics and DIY know-how on electrics to get yourself a car that moves in the right direction safely.  There is some pretty high voltage happening beneath the skin of your old, converted classic that enables it to whistle up to 100 km/h in seven seconds, or less.  Conversions are a substantial cost and do require appropriate re-certification tickets.  However, the whole ordeal should cost quite a lot less than a new EV, at least by a few thousand when compared to a Tesla.

Things to work through.

Installing an electric motor into a gas or diesel car’s chassis and platform requires the skill to build up a drive train and axle to get the power from the electric motor out onto the road.  The old gearbox that was essential to the old internal combustion engine (ICE) design is a useless mechanism for the new electric motor.  The old gearbox has to go, and a new drive mechanism has to be designed and implemented.

The weight of the vehicle and the dimensions of the wheels directly impact on the choice of brakes and suspension.  Not always but, more often than not, the car with a heavy battery pack will weigh more than the original set up.  In order to function safely with the added weight and/or changes in weight distribution, the converted car must have some structural strengthening, brake and suspension upgrades and some modifications done in order to ensure that the changes marry up into a harmonious mode of EV transportation and driving pleasure.

The battery pack isn’t going to be cheap.  You’ll easily spend in excess of $10–15k for a lithium-ion battery pack that is able to offer a respectable range over 100 km.  Lead-acid batteries, like those used in golf carts, can often be installed, though they typically deliver a rather small operating range on one charge. Lithium cells are smaller and lighter, and can enable longer ranges, but they’re more expensive.  How many batteries you’ll require will depend on the vehicle you’ve chosen and the space available in which to have them fitted.  The new battery pack, as mentioned above, is very heavy and has to be carefully installed inside the car’s framework in a way that won’t compromise occupant space and safety, as well as ensuring excellent on-road behaviour.

One other small thing to think about is how you will heat or cool the cabin.  ICE vehicles used the heat that comes from the engine design, but EVs need to run a different set up.

EV enthusiasts usually favour smaller and lighter vehicles for conversion, though the size of your wallet will also control what you can and can’t afford.

ICE to EV Conversions

Popular choices of cars that have been converted have been cars like the Honda Civic, VW Beetles, the Fiat 124 Spider, the Triumph Spitfire and MGs of the same era, Mazda Miatas or MX-5s, Toyota MR2s, and various Porsches. Pickup trucks and utes are also easy converters because they already have a big tray out the back to accommodate heavy batteries.

Mat Coates from Nelson, NZ, saw the potential of electric cars as a youngster who messed around with remote-controlled vehicles at age 10.  His first conversion was a Mitsubishi GTO, so there’s an inspiration for you.  How hard can it really be? All things considered, where there’s a will there’s a way.  As long as you tick all the boxes and do the job right first time and do it well.  A quiet classic that has been converted to EV propulsion is hard to beat and a rather special way of getting around.

A good place to start might also be to talk to the people at https://www.evolutionaustralia.com.au.  These people already have experience in converting ICE vehicles over to being an EV.

Hyundai and Hydrogen

I’m showing my age a bit when I say that I can remember some of the earlier Hyundai cars – the Hyundai Pony and Hyundai Excel come to mind.  Back in the 80s and early 90s, Hyundai cars were light, comfortable, and not really up to the same safety standards as the cars that were produced in other parts of the world.  Nowadays, however, the story is completely different, and the South Korean automaker often tops crash safety tests with their vehicles, the vehicles are still comfortable, and the style and technology has won many awards.  Hyundai has been always improving to the point where they are now a premium brand, very desirable, and leading the world on many fronts.  Key new innovations from the Hyundai Motor Company (HMC) team are exciting and are part of Hyundai’s vision for building a cleaner, greener world that includes vehicles that no longer rely on fossil fuels.

Because of the past couple of years, where covid has taken the world’s centre stage, there has been a big shortage of semiconductors in the auto industry, to the point that some auto manufacturers have had to shut down.  Semiconductors are used in the manufacture of electronic devices, including diodes, transistors, and integrated circuits.  These devices have a wide application in anything electronic, including laptops, computers, appliances, and, of course, the modern automobile.

Like all vehicle manufacturers, HMC has been affected by the shortage and have had to temporarily suspend some of their factories.  Despite the shortage, however, along with Toyota and Tesla, Hyundai is among a handful of automakers that actually increased their global sales despite the chip shortage.

However, Hyundai now plans to develop and build its own semiconductors so that they are not so reliant on chipmakers from other corners of the globe.  Hyundai wants to make sure it has a steady supply of semiconductors for their projects on-and-into the future by making its own.  It will be the parts and service arm for Hyundai, Kia and Genesis who would play a key role in the in-house development.  Stockpiling the electronic chips would be important for Hyundai, so that when other global crisis occur, they will then be in a better position to weather the storm.  Toyota and Tesla have already had stockpile contingency plans in place for some time, which has ensured that they fared well during covid.

Hyundai and Hydrogen

Hyundai are part of the Hydrogen Heavy Duty Vehicle Industry Group – comprised of hydrogen industry leaders Air Liquide, Hyundai, Nel Hydrogen, Nikola Corporation, Shell and Toyota.  This Group has signed agreements with Tatsuno Corporation and Transfer Oil S.p.A. to industrialize globally-standard 70 MPa hydrogen heavy-duty vehicle high-flow (H70HF) fuelling hardware componentry.  But, also, in Incheon, which is just west of Seoul, and in Ulsan, production plants will begin producing the hardware in the 2nd half of 2023 with an annual capacity of 100,000 hydrogen fuel cell systems.

South Korea’s influence on core Hydrogen components will see it as the world’s largest fuel cell production capacity, which will also help the HMC to diversify their business and tap into construction machinery and logistics equipment.

EVs might be the big talking point for some, but it is hydrogen that is the dark horse in the clean-green race.  These two new fuel cell plants in Korea will accelerate the hydrogen economy and secure broader global market dominance.  I reckon that Australia could be a hub for Hydrogen in the Pacific, don’t you think?

Hyundai’s wide-ranging hydrogen revolution accelerates with the showing of their 500 kW Vision FK sports car prototype and the e-Bogie autonomous commercial transport vehicles.  HMG recently announced that it will launch next-generation hydrogen fuel-cell power units in 2023 that will double the power output, halve the cost, and reduce package size by 30%, when compared to current systems.  Hyundai has a plan to offer “hydrogen for all” by 2040.

Hyundai’s Hydrogen Timeframe

In case you were not already aware, HMG is the parent of Hyundai, Kia and Genesis.  By 2028, HMG says it will have applied fuel-cell systems to all of its heavy commercial vehicle models, including large trucks, significantly reducing transport-related CO2 emissions.

Hydrogen Fuel Cells

By 2030, Fuel-Cell Electric Vehicles (FCEV) will have achieved price parity with Battery Electric Vehicles (BEV), HMG says.  And by 2040, HMG expects hydrogen to be available for everyone, for all vehicle types, and globally, triggering a lifestyle revolution.

Models for the Future

The Vision FK sports car is a 500 kW, hydrogen-powered high-performance prototype coupe that is capable of accelerating from 0-100 km/h in less than 4 seconds, while still offering a range of 600 km between top ups.  The Vision FK’s fuel cell unit carries N Performance branding, suggesting that it would be a future Hyundai N model rather than a luxury-focused Genesis.  HMG’s head of R&D, Albert Biermann, would not be drawn on when the Vision FK would go from prototype to production, but he did confirm that the next-generation Nexo fuel-cell SUV will launch “in the second half of 2023 followed by a Staria” The Staria is a people mover recently launched in Australia.  “We are also working, of course, on fuel-cell cars for Kia and Genesis. That will take a little longer time. After 2025 you can expect further fuel cell applications.”

The e-Bogie commercial application is a fuel-cell-powered autonomous trailer that could revolutionise commercial transportation.  Biermann also stated, “We are working full throttle on commercial [first] because that is the most effective way to avoid CO2. We are putting a lot of focus on fuel cells, not only for passenger cars but also for commercial vehicles.”

HMG’s Chairman, Euisun Chung, is even more emphatic about the significance of hydrogen fuel cell applications toward a sustainable future.  “This may be the last train to a Hydrogen Society, and time is running out. Hydrogen is the most powerful and pragmatic solution to overcoming environmental challenges. Hydrogen mobility will accelerate human progress.”

He went on to say that Australia may have a role to play.  “We know Australia is a country with vast and abundant renewable energy.  We are exploring business opportunities in Australia with our partners. Our goal is to build a sustainable ecosystem for [a] global hydrogen society.”

He also said that, “We will not immediately phase out internal combustion engines (ICE) commercial vehicles, but we are not starting any new developments of ICE. No new models and no new platforms. Everything will go forward with BEVs and FCEVs.”

Interestingly, according to Hyundai’s head of fuel cell development, Mr Saehoon Kim, FCEV technology has one huge advantage over BEVs: “The main problem with [a] BEV is the scalability of batteries. For a small EV it’s okay, but for commercial large scale [operation] the question immediately is …. How are we going to stack all these batteries with the heavy weight, and who is going to be happy with the low range? So, in this case fuel cell fits perfectly.”

Hyundai’s heavy commercial fuel cell program is already well advanced. In mid-2020, 45 Hyundai Xcient fuel cell trucks began commercial operation in Switzerland. Biermann stated that the trucks covered 210,000 kilometres per month and have saved 130 tonnes of CO2 emissions every month in operation.

The key to Hyundai’s commercial strategy is its third-generation fuel-cell system, which is in the final stages of development. Hyundai expects to launch two units in 2023, one producing 100 kW for passenger vehicles and SUVs (including the next Nexo and Staria FCEVs), and a 200 kW unit for commercial applications.  It has been said that by using two fuel-cell systems for trucks Hyundai can provide around 350 kW, which is equivalent to the power of current diesel engines used in trucking logistics.

This is all very exciting news and one that I have welcomed hearing.  I’m a fan of the new hydrogen fuel-celled vehicle technology moving forward.  This is Hyundai at its best, and we can only continue to watch this space.

Current Hyundai achievements:

The current ICE Hyundai i20 N has been crowned champion of Top Gear’s Speed Week.  The 26 fastest cars in the world participated in Top Gear’s Speed Week 2021.  It was the Hyundai· i20 N’s sharp handling and everyday usability that stood out to those in the Top Gear team.

Hyundai i20N

Most Reliable Cars in 2021

How reliable a car is directly correlates with our ownership satisfaction rating, right?  So, if we own a car that is always needing something fixed or repaired to make it properly functional, our contentment levels will be lower than if our car was reliable all or at least most of the time.  It won’t take long for an unreliable car to start to irk us.  Reliability is always a black and white area when it comes to car ownership satisfaction.

What car? has recently published their survey findings for 2021.  They questioned more than 16,000 people across the UK who owned a car no older than 5 years old, and this is the results that show which cars and brands are the most reliable, and which ones are not.  Is it possible that the more reliable a car is, the more green and sustainable the car is?

First place goes to Lexus who claims the top spot as the most dependable brand of car you can buy.  Lexus cars suffer from very few faults.  The Lexus NX SUV is the highest-rated hybrid you can buy.

Second place brand is Dacia, which is considered to be a budget brand.  Here is a prime example of reliability and low cost going hand in hand.  Dacia’s star performer is the previous generation Dacia Sandero.

Hyundai takes the bronze, where the previous generation Hyundai i10, the larger i20, and the current Hyundai i30 being standouts.  It was revealed that the problem areas included the brakes and gearbox, however the brand’s 5-year unlimited km warranty meant that most problems were fixed for free.

Suzuki

Suzuki takes fourth place for brand reliability; an excellent result.  The little Suzuki Swift is the third most reliable car – a star performer for Suzuki.

Mini

Mini cars are generally pretty reliable cars.  Mini’s Countryman scored well in the small SUV class.  Mini’s little Hatchback is the sixth most reliable small car overall – a great result.

Toyota

Toyota has long been an impressively reliable brand, though it’s slipped slightly from third place last year.

Mitsubishi

Mitsubishi ranked 7th, their place unchanged from last year. The Mitsubishi Eclipse Cross is the most reliable family SUV on the market, boasting a 100% reliability score!

Mazda

Eighth place goes to the Mazda brand.  Mazda highlights include the CX-3  (a very reliable small SUV), the CX-5 (petrol version), and the MX-5 sports car.

Kia

Star performers for Kia are the XCeed and Ceed family cars, which are among the most reliable in their class, while the Kia Optima is the second-most reliable executive car.  Kia’s affordable E-Niro is the third most reliable EV.

MG

MG is the brand that takes out 10th spot.  The classy MG ZS EV is the second-most reliable EV in the survey.

11) Citroen – Citroen’s C3 Aircross is the third most reliable small SUV.

12) Skoda – Skoda’s Superb is the most reliable executive car.

13) BMW – BMW’s previous model 1 Series is the most reliable family car.  The BMW 5 Series is the most reliable luxury car.  The BMW 3 Series also ranks 3rd in the executive class.  Current BMW Hybrids are not quite so reliable.

14) Honda – The previous model Jazz was fifth in its class, while the HR-V is the most reliable small SUV.

15) Tesla – the Tesla Model 3 ranked 5th in the EV class.

16) Renault

17) Seat

18) Audi – Audi’s TT is the number one sports car for reliability.

19) Volvo

20) Volkswagen

Jaguar, Mercedes Benz, Peugeot, Vauxhall, Porsche, Alfa Romeo, Ford, Nissan, Land Rover, and then Fiat takes out 30th spot.

Of the last 10:

Porshce’s Macan took 1st place for the luxury SUV class.

Nissan’s LEAF is 1st for the most reliable EV.

Ford Movements

Hot off the Press News has Ford investing big money in EV production.  All up, Ford and a South Korean supplier will spend $11.4 billion US on Ford’s EV production and expansion.  Ford hopes this spend will enable them to produce more than one million EVs per year in the second half of this decade.  The buzz words used in new and future cars include the term electric vehicles or EVs.  Established automakers like Ford are racing to try and close the gap on Tesla’s EV lead.  As you may be aware, Tesla produces a range of EVs, and Tesla are currently on the way to selling more than 800,000 electric cars this year.  Tesla is currently the most valuable automaker in the world, with a market capitalization of nearly $800 billion US.  Ford’s market value is $56 billion US.

Ford F-150 Lightening

Ford’s big spend will be its 2nd biggest spend in its history.  Under the climate change banner and the Biden government, this latest US multibillion-dollar move to quickly transfer production plants to EV production is seen as a fast track phasing out of gasoline-powered cars and trucks as part of the global push to combat climate change.  I won’t debate the science here.

Ford is to build 2 battery plants in Kentucky and 1 in Tennessee under the joint venture with its main battery cell supplier, SK Innovation of South Korea.  In addition, Ford will build an assembly plant at the Tennessee location to churn out EV trucks. Ford will invest $7 billion and SK Innovation $4.4 billion, the companies have said.  Ford expects electric vehicle models to make up 40% of their vehicle production by 2030.  That’s only a little over 8 years away!

Ford’s new truck plant and battery factory in Tennessee is likely to be the place that will produce a new battery-powered Ford F-Series pickup truck, this following the previously announced F-150 Lightning pick up truck.  I have to say that the F-150 Lightening is an impressive beast!  Ford has said a mix of both the public and businesses had already placed 150,000 reservations for purchasing the F-150 Lightning.

Ford Mustang Mach-E

Also this year, Ford began selling the Mustang Mach-E, which has taken a sizable market share from Tesla.  Ford also plans to add an EV delivery van into the mix by the end of the year.  Then, in early 2022, the electric F-150 Lightning will roll out of their showrooms and silently onto the tarmac.

Ford Mustang Mach-E

Mr. Jim Farley, Ford Motor’s  president and CEO, has recently said that making electrical vehicles affordable should be among the top priorities for automakers, so that the average vehicle-buyer can purchase one.  This is good news, as a new EV is well out of most people’s budget.

He also made a couple of rather poignant comments: one on a key issue on questioning how EV production will impact labour/jobs (a subject rather close to home with our relatively recent Ford and Holden closures), and the other on materials.  So, apparently, it costs 30% less to manufacture the Ford electrical vehicles.  This will definitely affect production rates and employment long term.  Then there is also the issue of battery supply and the rare minerals (i.e., lithium, cobalt) needed to power them, said Farley.   Mr Farley stated, “We have to bring battery production here, but the supply chain has to go all the way to the mines.  That’s where the real cost is, and people in the U.S. don’t want mining in their neighbourhoods.  So, are we going to import lithium and pull cobalt from nation-states that have child labour and all sorts of corruption, or are we going to get serious about mining? …  We have to solve these things and we don’t have much time.”

Here in Australia, we haven’t jumped on the EV wagon just yet, and if we are going too, then there is so much infrastructure that will be needed to be implemented before owning an EV becomes a viable option for people like me.  Even the thought of the costs involved in getting the right infrastructure is eyewatering, and, like most impatient home renovators and idealistic politicians, the job must be done yesterday!  The hard working folk pay for it, of course!

There seems little patience on offer by many governments and climate change activists for making the move to EVs (and other new transportation technology like an EV repower on your existing car) a more balanced and delicate affair.  For now, owning an EV is very much for the elite, so Farley is on the right track when he says that the cost of EV ownership must be addressed very quickly.

Ford still has many plants throughout the U.S.  However, like other big automotive manufacturers, Ford also has locations right around the world.  Ford has many production plants scattered about the globe, and these include assembly plants, engine plants, forging plants, stamping plants and transmission plants.  Here, in Australia, Ford still has special engine production and stamping plants.

On a more local note, Ford has a new feature called ‘FordPass’ offered on all their new models sold in Australia.  FordPass has a few systems worthy of a mention that include:

Remote Start+, where minutes before leaving, you can start your connected vehicle’s engine from your mobile device in order to heat or cool the cabin using the last known climate control setting.

Vehicle Status, where you can check key variables such as fuel level and your odometer on the FordPass App to help plan your journey.

Remote Lock/Unlock, where, conveniently, you can use your mobile device to make sure the car doors are locked or unlocked without being anywhere near your vehicle.  If only it could do that for my house front door!

Vehicle Locator, where you can check your vehicle’s exact location in the FordPass App, which is particularly useful if you share your vehicle with one or more members of your household or if you have forgotten where you parked it.  However, if you’ve forgotten where you’ve parked it, then maybe you better get breath tested!

Vehicle Health Alerts, where the FordPass App sends Vehicle Health Alerts directly to your mobile device, pre-empting service needs and general maintenance such as low washer fluid.

Live Traffic, where this feature enhances your SYNC 3 Navigation system by delivering up-to-date traffic updates.  This technology allows you to adjust your recommended route based on the traffic conditions, helping you to arrive more relaxed and on time.

Ford Ranger Special Ediiton

In this second half of 2021, Ford Australia offer a nice broad range of vehicles that include the Puma, Escape and Everest SUVs; the Ford Focus car; the Ford Ranger Ute; the Transit Commercial range that has custom vehicles, vans, buses and cab-chassis models; the Ford Performance range that includes the Fiesta and Focus ST, the Focus ST-3, the Ranger Raptor, the Mustang and Mustang Mach-1; and the Special Edition Rangers and Everests.

It is good to see Ford keeping pace with any EV and hybrid automotive technology and movements; though at what societal and environmental cost?  New Ford vehicles are good, and Ford offers a very complete package for all new vehicles in the Ford range.  Once you’ve driven a Ford, its not so easy to change out of the brand come new car buying territory.

Classic Citroen

As mentioned in a more recent blog, Stellantis is official: PSA and FCA have merged under the name Stellantis.  The name Stellantis originates from the Latin verb “stello” which means “to brighten with stars”.  Car maker, Stellantis, now has 14 car brands under its wing, and they include: Abarth, Alfa Romeo, Chrysler, Citroen, Dodge, DS Automobiles, Fiat, Jeep, Lancia, Maserati, Opel, Peugeot, Ram, and Vauxhall.  As far as its size goes, Stellantis is now the 4th-largest carmaker in the world, behind Toyota, VW Group, and the Renault-Mitsubishi-Nissan Alliance.

As you might have noticed, one of the 14 car brands is Citroen.  Stellantis is planning to launch a new model under the Citroen brand for India and Latin America in 2022.  The idea is for Stellantis to push outside the boundaries of its conventional European sales territory and branch further into emerging markets where it has had much less exposure.

Citroen left India in the 1930s, so some water has certainly past under the bridge since then.  At a time when some other foreign carmakers are leaving India after struggling to make a profit there, Stellantis is seizing an opportunity with its Citroen-based products and heading straight on in.  The company recently said it plans to produce a new version of the Citroen C3, which is commonly a city car in Europe, will be launched into India and Latin America in the second half of 2022.  The car will be produced in India through a joint venture with CK Birla, and in Brazil.  It is likely to be the first of 3 models aimed primarily for India and Latin America – these 3 models being produced over the next 3 years.  By 2030, Stellantis expects India to become the world’s 3rd biggest car market after China and the U.S.

Citroen C5 X

However, Stellantis isn’t running away from Europe car markets anytime soon.  It is well-known that the big German brands are dominating the midsize car segment in Europe, however Stellantis’s European focus is ramping up.  Following the Peugeot 508 and glorious Citroen DS9, Citroen has a new flagship model that they want to put against the classy Mercedes E-Class, BMW 5 Series, and Audi A6 models.  What is exciting is that the new Citroen C5 X will be a car that is a bit sedan, a bit wagon and a bit SUV in its design.  The relatively flat roofline has a bit of sedan in its lines.  The drawn-out rear-end brings the station wagon style, and then the tall ride height is more SUV – reminiscent of the C5 Aircross.  At 4805 mm long, 1865 mm wide and 1485 mm tall, the new Citroen C5 X is smaller than its potential German rivals.  It offers 545 litres of boot space behind the rear seats, which can be expanded to 1640 litres after the rear seats have been folded flat.

Citroen C5 X

It has to be said that the new Citroen C5 X boasts a quirky exterior that takes after the 2016 Cxperience concept.  Its interior will be loaded with technology – all the very best tech that Citroen has to offer.  A 12-inch touchscreen for infotainment, a large head-up display with support for augmented reality, a fully digital driver’s display, separate physical controls for the climate-control settings, sumptuous seating, and superior ride quality and comfort are just some of the features of the soon-to-be available Citroen C5 X will provide.

Citroen C5 X

Speaking of Citroen ride quality, the new Citroen C5 X flagship will come with the patented Citroen Advanced Comfort suspension, with the plug-in hybrid version making comfort even further advanced by featuring an active suspension.  It boasts what the French automaker refers to as Progressive Hydraulic Cushioning, which when combined with exceptionally comfy seats, it should enable a silky-smooth ride even on bumpy surfaces – all in legendary Citroen fashion.

A variety of petrol-fed engines are planned; however, Citroen highlights the plug-in hybrid powertrain with 168 kW and more than 50 km of electric range as a special model to take on the gradual change to hybrid and EV technology.  The Citroen C5 X PHEV model will be able to travel at speeds of up to 135 km/h in full electric mode.

The brand-new Citroen C5 X, made under the Steallantis name, will go on sale in Europe in the second half of 2022.  Let’s hope that we see it as part of Citroen Australia’s line-up, too.  With Australia’s growing love of the SUV, it would seem a logical model to bring over here…

For something a little different! 

Citroen DS 1970

The 1955–1975 Citroen DS is still regarded as one of the most unique and interesting cars to have ever been made.  The idea of retrofitting one of these to modern electric propulsion would be in the spirit of all things Citroen.  A company known as ‘Electrogenic’ decided to reinvent the Citroen DS model with a battery-powered conversion.

The Oxford-based company retained the original car’s aerodynamic body but swapped the 2.0-liter petrol-fed engine for a brushless electric motor that produces 89 kW of power and 235 Nm of instant torque – a rather meaty performance upgrade.  Interestingly, the power is delivered to the front wheels through the car’s original manual gearbox.

Providing the electric energy for the powertrain is a 48.5-kWh battery pack that is housed within the DS’s body.  Electrogenic stated a real-world driving range of about 225 km per charge was doable.  A 29-kW charger will refill the batteries to full capacity in about two hours.  If the customer wanted a larger battery for a higher range between charges, it can be provided in a combination with a more powerful charger.

One of the fine attributes of the old Citroen DS was its silky-smooth hydro-pneumatic suspension.  Electrogenic has also improved the hydro-pneumatic system by replacing the standard mechanical pump with an electric pump, which is more silent and delivers a more sophisticated ride than the original.

From the outside, the only visual differences between the original DS and the electric-powered conversion are the lack of exhaust pipes and the subtle but distinctive “DS EV electronique” decal on the boot.

Steve Drummond, director of Electrogenic, says that “Repowering classic cars with all-electric drive brings a number of benefits, from the ease of use to reliability and performance gains”.  Of course, the quiet EV function brings out the best in old-timer classics.

BMW Brilliance

BMW has always been a favourite standout brand of mine, and BMW is forging new models and technology even as we speak.  It has been a bit of a gruelling year-or-two with the covid shenanigans, and car manufactures are only one small segment of the global economic pie to have taken a sizable hit.  The shortage of semiconductors has been, and still is, a problem because cars rely on these items for controlling anything from your electric windows to all the fancy driving assistance aids.  However, the winds are changing, and the rebound is occurring.  Luxury car marques like BMW seem to be doing very well, and even with the electronic chip shortages being a bit of an issue it seems that BMW will get through this period in fairly good shape.  There is always a talking point re this special car marque; sometimes the designs might look great to some and not so flash for others, but there is always a gem being turned out from this great team of motoring designers and manufacturers.  BMW cars are more often than not great to drive, good looking, practical and advanced cars.

In this covid recovery period, various chief financial officers recently mentioned that, for now, luxury marques like BMW would consciously undersupply demand levels, which seems a prudent, sensible path to take, as BMW new car prices are holding up very well – quite bullish in fact.  The increased pricing power has already trickled down to the bottom lines for BMW and Daimler.  Mercedes achieved a 12.2% return on sales in the last reported quarter, which was up from 8.4% in the same period in 2018 (2018 being of a period not affected by the pandemic or diesel emissions litigation costs).  BMW achieved a 16% return on sales, which was up from 8.6% in 2018.  BMW also reported a $5.7 billion net profit in the second quarter of this year, suggesting global auto markets are continuing to recover from the pandemic — particularly when it comes to luxury cars like BMW and Mercedes.

BMW M4 Minty Green

This is great news for BMW and car lovers in general, but what’s new in BMW’s box of tricks?  A very cool thing that BMW revealed at the recent Munich Motorshow (early September 2021) was to be found in the BMW M4 corner, where this manic machine, with its impetuous acceleration, showed a jaw-dropping minty green sheen to its beautiful, sexy exterior.  The M4 Competition wore a Mint Green paint job and sat upon gorgeous bronze 20-inch rims.  Both of these options are available as part of the brand’s expanded BMW Individual customization line, which you can find on BMW’s online configurator, where more than 130 other paint options and eight different wheel options are available.  This latest BMW M4 Competition also had a new fibre front splitter, a restyled rear bumper, a rear wing, and some unique side skirts that were all made with carbon fibre.  Carbon fibre interior seating surfaces and trim pieces are also part of the online configurator.  So, try before you buy!

The Munich motor show also allowed the public to preview a hydrogen-electric BMW X5 that is due to enter very-limited production in 2022.  This is an exciting moment because the vehicle was first previewed in 2019 as the i Hydrogen Next concept.  It’s currently in the prototype stage, and early this month it was confirmed with the go ahead, going by the name of BMW iX5 Hydrogen.

A hydrogen-electric vehicle is like a battery-electric vehicle, but instead of drawing power from electricity out of the charged battery the hydrogen-electric vehicle relies on a hydrogen fuel-cell stack to produce electricity power.  BMW’s iX5 Hydrogen has the hydrogen fuel-cell positioned up front where it draws hydrogen from 2 tanks, one in the X5’s transmission tunnel and another under the rear seats.  The tanks are made from carbon-fibre-reinforced-plastic and can hold about 5.9 kg of hydrogen at more than 10,000 psi.  Tank filling takes only a few minutes.  The hydrogen fuel-cell combines hydrogen with oxygen from the air to create electricity.  This process only has water (H2O) as a by-product – Wow!  The electricity primarily powers a single motor at the rear axle but is also used to charge a small battery that steps in from time-to-time to deliver extra grunt to the motor during high-load situations.

BMW iX5 Hydrogen Platform

The BMW iX5 Hydrogen will have a total system power output of 275 kW.  The hydrogen fuel cell, on its own, generates about 125 kW.  The vehicle’s aerodynamically shaped 22-inch wheels are wrapped in a new Pirelli tyre that is made from natural rubber and a wood-based synthetic fibre known as rayon.  These two materials replace much of the petroleum-based synthetic rubbers used in modern tyres.

The extensive field testing has already started in earnest within Europe.  Particular focus points have had the engineers examining how effectively the CO2-free drivetrain works in real-life conditions.  Also, they are measuring metrics which include reliability, safety, and efficiency during everyday conditions to ensure that the new model is perfect for mass production.  Hydrogen fuel cell technology has the potential to supplement internal combustion engines, plug-in hybrid systems, and battery-electric vehicles.  The BMW iX5 Hydrogen has hydrogen tanks that can be filled quickly in only 3–4 minutes.

BMW states that the small batch of iX5 Hydrogen models that are destined to be built in 2022 will only be used for demonstration and testing purposes.  BMW doesn’t expect to have any hydrogen-electric vehicles at dealerships until 2025 at the earliest and depending on the direction that the automotive markets take.

Newest off the showroom floor is the all-new BMW iX3 with its refreshed exterior design.  The new BMW iX3 has a sexier appearance and introduces the M Sport Package as standard.  BMW has achieved an impressive CO2 emission assessment for this next-generation iX3, and the vehicle boasts an exceptionally efficient drive system.  Extensive use of secondary raw materials in the manufacture of aluminium castings and thermoplastics combines with the new iX3 boasting an absence of rare earth materials and the use of more green electricity in its production.

BMW iX3 2022

The BMW iX3 has a kidney grille that is larger still, and it has a single-piece frame that comes in Pearl-effect Chrome with blue accents to match with the BMW i styling cues.  Its headlights have been made slimmer.  It also boasts 19-inch black aerodynamic wheels, an automatic tailgate, adaptive suspension, a heated steering wheel, a panoramic sunroof, and Smartphone integration with Apple CarPlay and Android Auto.

BMW is a bit of a landmark in the automotive world, a benchmark, the perfect blend of performance, luxury and practicality.  In the future, BMW wants to be ready to supply customers with their powertrain of choice, whether it be gasoline, diesel, battery or hydrogen.  In the case of hydrogen, BMW sees it as an opportunity for customers that favour long-distance driving or who happen to live in regions without adequate battery recharging infrastructure.

I have so many favourite BMWs and other cars, including the 4.0-litre Falcons, which have rolled our roads over the last few decades of motoring, but let’s not be nincompoops and let’s embrace new ways of automotive power; let’s embrace the new BMW i technology.